MODELAGEM DO CULTIVO DA MICROALGA Spirulina platensis POR METODOLOGIA DE SUPERFÍCIE DE RESPOSTA

Christian Oliveira Reinehr¹*, André Renato Scapin²

 Laboratório de Aulas Práticas, Curso de Engenharia de Alimentos, Faculdade de Engenharia e Arquitetura, Universidade de Passo Fundo
Laboratório de Tecnologia de Alimentos, Curso de Engenharia de Alimentos, Centro de Ciências Agro-Ambientais e de Alimentos, Universidade Comunitária Regional de Chapecó

Agro-Ambientais e de Alimentos, Universidade Comunitaria Rez Apoio financeiro: FAPE/UNOCHAPECÓ *E-mail: reinehr@upf.br

RESUMO

A produção de microalgas como fonte de proteína e de outros compostos nutricionalmente importantes apresenta-se como uma alternativa na busca de novas fontes de alimentos, na tentativa de solucionar problemas de carência de alimentos em regiões mais pobres. A microalga Spirulina platensis é uma das microalgas mais conhecidas e usadas no planeta, sendo uma boa fonte de proteínas, compostos fenólicos, pigmentos, vitaminas e lipídios poliinsaturados, como o ácido γ-linolênico. Os biorreatores fechados usados no cultivo possuem muitas vantagens, como alta utilização da luz, controle de temperatura e controle de assepsia. Entretanto, os custos de produção muitas vezes permanecem elevados, em função do meio de cultivo usado e das condições aplicadas. Com o objetivo de modelar a cinética de crescimento da microalga Spirulina platensis em função de condições de cultivo, utilizouse metodologia de superfície de resposta, tendo sido estudados dois fatores: fotoperíodo e concentração de nutrientes do meio de cultivo. Assim, foram realizados cultivos em fotobiorreatores de dois litros durante 600 horas a 30°C com iluminância de 2500 lux. Os resultados mostraram que os dois fatores foram significativos (p<0,05) no processo, mas de forma independente. Assim, maiores velocidades de crescimento (de até 0,0992/dia) foram obtidas com concentração de nutrientes próxima a 60% de meio e com fotoperíodo próximo a 18 horas. Observou-se que a maximização do cultivo pode ser atingida diminuindo-se a quantidade de nutrientes em relação ao meio padrão Zarrouk e utilizando-se um fotoperíodo maior que as 12 horas usuais.

Palavras-chave: cianobactéria, concentração de nutrientes, fotoperíodo, otimização.

1 INTRODUÇÃO

O cultivo comercial de microalgas em larga escala começou nos anos 60 no Japão com a cultura da *Chlorella*, seguida nos anos 70-90 pelo cultivo da *Spirulina* no México, Estados Unidos e China. Em um período de cerca de 30 anos a indústria biotecnológica de microalgas cresceu e se diversificou muito. Uma característica comum da maioria das espécies de microalgas atualmente produzidas comercialmente (*Spirulina*, *Chlorella* e *Dunaliella*) é que elas crescem em meios altamente seletivos, ou seja, podem crescer em cultivos abertos e ainda assim permanecerão relativamente livres de contaminação por outros microrganismos (BOROWITZKA, 1999).

A microalga *Spirulina platensis* apresenta, em base seca, cerca de 65 a 70% de proteínas, 5 a 15% de lipídios e 10 a 20% de carboidratos. As cianobactérias diferem na composição lipídica dos outros organismos procarióticos, pois apresentam ácidos graxos poliinsaturados, enquanto que as bactérias contêm exclusivamente ácidos graxos saturados e monoinsaturados. A microalga *Spirulina* apresenta substâncias de alto valor nutricional, sendo suas propriedades terapêuticas e nutricionais bastante conhecidas (HENRIKSON, 1994).

Os biorreatores fechados, que podem ser usados no cultivo dessa microalga, possuem muitas vantagens, como a obtenção de altas produtividades, controle de temperatura e

controle de assepsia. Com este sistema e com controle das condições de crescimento, tem-se um produto de alta qualidade, operando com altas concentrações celulares. Entretanto, o desafio de reduzir os custos de produção para tornar este sistema mais competitivo ainda permanece (BOROWITZKA, 1999).

As condições de cultivo influenciam consideravelmente no crescimento da *Spirulina platensis*, tanto em cultivos abertos quanto fechados. Assim, a variação de fatores como: pH, luminosidade, presença de íons bicarbonato, presença de contaminantes e temperatura (VONSHAK et al., 1982), fonte de nitrogênio (COSTA et al., 2000), densidade populacional (GITELSON et al., 1996; VONSHAK et al., 1982) pode fazer com que um cultivo seja tecnicamente otimizado.

Em função disto, o presente trabalho teve como objetivo modelar o cultivo da microalga *Spirulina platensis* em reator fechado, avaliando a influência da concentração de nutrientes e do fotoperíodo na velocidade específica máxima de crescimento.

2 DESENVOLVIMENTO

2.1 Material e Métodos

A microalga *Spirulina platensis* (cepa Paracas) foi fornecida pelo Laboratório de Fermentações da Universidade de Passo Fundo. Para o preparo e manutenção do inóculo foi utilizado o meio Zarrouk, padrão para o crescimento dessa cianobactéria (ZARROUK, 1966).

Os cultivos foram realizados em frascos Erlenmeyers de 2 litros, com um volume inicial de 1,8 litros de meio e concentração inicial de biomassa de 0,1 g/l. A aeração dos cultivos foi realizada através de bombas de diafragma. O aparato experimental foi mantido em uma câmara não estéril, com iluminância de 2500 lux e temperatura de 30°C (COSTA et al., 2000) durante 600 horas.

Um planejamento experimental do tipo superfície de resposta (BOX et al., 1978) com dois fatores de estudo foi utilizado para o trabalho, sendo que a matriz de planejamento com os valores das variáveis pode ser observada na Tabela 1. As variáveis estudadas foram o fotoperíodo e a concentração de nutrientes do meio de cultivo, conforme apresentado na matriz do planejamento. Todos os experimentos foram realizados em réplica.

Foram realizadas amostragens a cada 24 h para a determinação da concentração de biomassa, a qual foi calculada através de uma correlação pré-determinada entre a densidade ótica a 670 nm e a concentração celular.

Tabela 1 Matriz do planejamento por superfície de resposta utilizado

Experimento	$\mathbf{X_1}$	\mathbf{X}_2	Fotoperíodo (h)	Nutrientes (%)
1	-1	-1	6	25
2	1	-1	18	25
3	-1	1	6	75
4	1	1	18	75
5	-1,414	0	3,5	50
6	1,414	0	20,5	50
7	0	-1,414	12	15
8	0	1,414	12	85
9	0	0	12	50
10	0	0	12	50

X₁: Variável codificada do fotoperíodo

X₂: Variável codificada da concentração de nutrientes

2.2 Resultados e Discussão

Os resultados finais dos experimentos realizados são apresentados na Tabela 1, onde são mostradas as concentrações celulares inicial (tempo = 0 h) e final (tempo = 600 h) de cada experimento, além das velocidades específicas máximas de crescimento, obtidas por regressão exponencial na fase logarítmica de crescimento. As médias e desvios de cada experimento também são mostrados. Pode-se observar que a velocidade específica máxima de crescimento variou de 0,0201 dia⁻¹ (experimento 7A) a até 0,0992 dia⁻¹ (experimento 6B), sendo que o primeiro era o extremo inferior da concentração de nutrientes, e o último era o extremo superior do fotoperíodo.

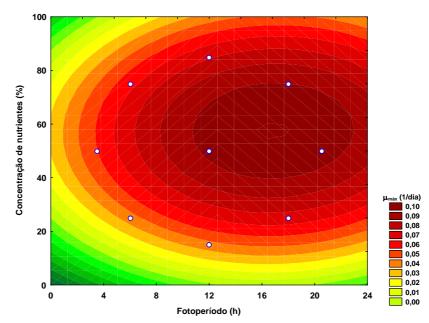

Assim, verificou-se que concentrações abaixo de 20% de nutrientes (em relação ao meio Zarrouk) impediram o crescimento celular, em função da insuficiência de nutrientes. Verificou-se também que os fotoperíodos maiores que as 12 h convencionais proporcionaram um maior crescimento celular, não chegando a ocorrer a fotoinibição do aparato fotossintético da microalga nem com mais de 20 h de fotoperíodo. Esse fenômeno foi relatado por Vonshak et al. (1982) quando utilizadas intensidades luminosas muito elevadas.

Tabela 2 Resultados cinéticos dos experimentos realizados

Tabela 2 Resultados cineticos dos experimentos feanizados								
Experimento	Biomassa inicial		$\mu_{ ext{máx}}$	Média	Desvio			
	(g/l)	(g/l)	(g/l) (1/dia)		Desvio			
1A	0,098	0,398	0,0538	0,0510	0,0040			
1B	0,111	0,427	0,0482	0,0510				
2A	0,099	0,748	0,0756	0,0735	0,0030			
2B	0,105	0,693	0,0713	0,0733				
3A	0,102	0,425	0,0532	0,0538	0,0009			
3B	0,096	0,407	0,0545	0,0556				
4A	0,098	0,872	0,0809	0,0794	0,0021			
4B	0,102	0,809	0,0779	0,0794				
5A	0,103	0,273	0,0396	0,0421	0,0035			
5B	0,092	0,274	0,0446	0,0421				
6A	0,097	1,173	0,0968	0,0980	0,0017			
6B	0,096	1,126	0,0992	0,0900				
7A	0,090	0,068	0,0201	0,0206	0,0008			
7B	0,095	0,049	0,0211	0,0200	0,0008			
8A	0,088	0,510	0,0807	0,0799	0,0012			
8 B	0,091	0,535	0,0790	0,0799	0,0012			
9A	0,093	0,527	0,0939	0,0952	0,0018			
9 B	0,092	0,541	0,0964	0,0954				
10A	0,091	0,597	0,0896	0.0807	0.0001			
10B	0,094	0,596	0,0898	0,0897	0,0001			

A análise de variância do planejamento experimental utilizado mostrou que houve influência significativa do fotoperíodo (p<0,0001) e da concentração de nutrientes (p=0,0012) na velocidade específica máxima de crescimento. Entretanto, o fator de interação das duas variáveis não foi significativo (p=0,8483), mostrando que ambos os fatores apresentaram influência independente no processo. A Figura 1 apresenta a superfície de resposta da velocidade específica de crescimento em função das variáveis estudadas, obtida a partir da equação da modelagem do processo, que foi a seguinte:

$$\mu_{\text{m\'ax}} = 0,0924 + 0,0159X_{1} - 0,0100X_{1}^{2} + 0,0116X_{2} - 0,0203X_{2}^{2}$$

Figura 1 Superfície de resposta da velocidade específica máxima de crescimento em função do fotoperíodo e da concentração de nutrientes

3 CONCLUSÃO

A velocidade específica máxima de crescimento foi influenciada pelas duas variáveis estudadas, sendo obtidos maiores resultados em níveis mais superiores da concentração de nutrientes e do fotoperíodo.

A modelagem mostrou que a otimização da velocidade de crescimento pode ser obtida com concentração de nutrientes de cerca de 60% em relação ao meio Zarrouk e com fotoperíodo próximo a 18 horas.

4 REFERÊNCIAS

BOROWITZKA, M. A. Commercial production of microalgae: ponds, tanks, tubes and fermenters. **Journal of Biotechnology**, 70, 313-321, 1999.

BOX, G. E. P.; HUNTER, W. G.; HUNTER, J. S. **Statistics for experimenters**. An introduction to design, data analysis, and model building. New York: John Wiley & Sons, ISBN 0-471-09315-7, 1978.

COSTA, J. A. V., LINDE, G. A., ATALA, D. I. P., MIBIELLI, G. M., KRÜGER, R. T. Modelling of growth conditions for cyanobacterium *Spirulina platensis* in microcosms. **World Journal of Microbiology & Biotechnology**, 16, 15-18, 2000.

GITELSON, A., QIUANG, H., RICHMOND, A. Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph *Spirulina platensis*. **Applied and Environmental Microbiology**, 62 (5), 1570-1573, 1996.

HENRIKSON, R. **Microalga Spirulina. Superalimento del futuro**. Barcelona: Ediciones S.A. Urano, ISBN 84-7953-047-2, 1994.

VONSHAK, A., ABELIOVICH, A., BOUSSIBA, S., ARAD, S., RICHMOND, A. Production of *Spirulina* biomass: effects of environmental factors and population density. **Biomass**, 2, 175-185, 1982.

ZARROUK, C. Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de *Spirulina maxima* Geitler. *Ph.D. Thesis*, University of Paris, 1966.