

UNIVERSIDADE EM TRANSFORMAÇÃO: INTEGRALIZANDO SABERES E EXPERIÊNCIAS

2 A 6 DE SETEMBRO DE 2019

Marque a opção do tipo de trabalho que está inscrevendo:

(x) Resumo

() Relato de Experiência

() Relato de Caso

Avaliação da propriedade de solubilidade em filmes de amido e gelatina

AUTOR PRINCIPAL: Naiana Pereira Balbé.

CO-AUTORES: Marieli Rosseto, Daniela Dal Castel Krein e Lillian Massuda.

ORIENTADOR: Aline Dettmer.

UNIVERSIDADE: Universidade de Passo Fundo.

INTRODUÇÃO:

Filmes biodegradáveis são uma alternativa a substituição de polímeros oriundos de fontes fósseis, devido as crescentes consequências sociais e econômicas que a poluição derivada de plásticos provoca, principalmente, pelo tempo que leva para se decompor, quando em comparação com biopolímeros

Objetivo deste estudo foi avaliar a adição da enzima transglutaminase em relação à solubilidade em filmes. Filmes obtidos de amido e gelatina pela técnica de *casting*, variando concentrações de amido e enzima em busca do melhor resultado, onde foi possível evidenciar que ambos foram significativos e que a menor solubilidade se da ao utilizar a menor quantidade de amido e maior de enzima na composição do filme.

DESENVOLVIMENTO:

Preparação da solução filmogênica

Para a elaboração dos filmes (solução de 200 ml) foram homogeneizados 8 gramas de gelatina em 100 mL de água destilada e adicionados glicerol em relação a massa de gelatina, para posterior solubilização a 60 °C por 30 min. Após essa etapa, o pH foi corrigido para 7, a temperatura foi reduzida a 37 °C e a enzima transglutaminase foi adicionada, o tempo de ação da enzima foi de 15 min. Paralelo a isso foi diluído amido em 100 mL de água destilada. A solução de gelatina foi misturada com a de amido e permaneceu em banho maria a 85 °C durante 10 minutos. Na sequência, a solução foi vertida em placas de Petri, estas foram secas em estufa de secagem com circulação de ar (Ethik 420-4TDE) a 40 °C, por 14 horas. Os filmes secos foram mantidos em ambiente com solução saturada de brometo de sódio (NaBr), equivalente a 59% de umidade relativa por sete dias.

Solubilidade em água

Para a análise de solubilidade amostras de 2 x 2 cm foram cortadas e secas a 70°C por 24 horas para determinar a massa seca inicial. Após a pesagem, as amostras foram imersas em 50 mL de água destilada e mantidas sob agitação por 24 horas, a 25 °C. Decorrido este tempo, as amostras foram secas a 70 °C durante 24 horas para determinação de sua massa seca final por (Cuq et al., 1997). Calculou-se a solubilidade conforme a Equação 1:

UNIVERSIDADE EM TRANSFORMAÇÃO: INTEGRALIZANDO SABERES E EXPERIÊNCIAS

2 A 6 DE SETEMBRO DE 2019

$$S = \frac{(mi - mf)}{mi} \cdot 100 \tag{1}$$

Onde, S = solubilidade do filme (%), Mi = massa inicial do filme (g) e Mf = massa final do filme (g), após a imersão na água.

O experimento foi realizado com um planejamento experimental 2^k, com dois fatores controláveis, dois pontos centrais e duas réplicas, os fatores controláveis foram às quantidades de amido (0,5%, 1% e 1,5%) e enzima (0,5%, 1,5% e 2,5% sobre a massa de gelatina), conforme Tabela 1, em anexo, a variável resposta foi à solubilidade do filme, quanto menor, melhor.

Resultados e Discussões

Os resultados estão apresentados na Tabela 1, em anexo, onde é possível observar que o filme que apresentou maior solubilidade é aquele com maior teor de amido melhor e menor quantidade de enzima adicionada. Como queremos que os filmes durem por mais tempo, menor solubilidade, realizou-se a análise estatística de significância, Tabela 2, em anexo, tem-se que quanto menor o teor de amido melhor e quanto maior o teor de enzima melhor.

CONSIDERAÇÕE S FINAIS:

A partir do planejamento experimental e análise de solubilidade, conclui-se que a melhor condição, menor solubilidade, para filmes de amido, gelatina, glicerol e transglutaminase é com menor teor de amido (0,5 %) e maior teor de enzima (2,5 por cento em relação à massa de gelatina).

REFERÊNCIAS

CUQ, B. et al. Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers. **Journal of Agricultural and Food Chemistry**, v. 45, p. 622-626, 1997.

NÚMERO DA APROVAÇÃO CEP OU CEUA (para trabalhos de pesquisa): Número da aprovação. SOMENTE TRABALHOS DE PESQUISA

UNIVERSIDADE EM TRANSFORMAÇÃO: INTEGRALIZANDO SABERES E EXPERIÊNCIAS

2 A 6 DE SETEMBRO DE 2019

ANEXOS

Tabela 1 – Planejamento Experimental

rabela I – Flanejamento Experimental				
Identificação	Amido (%)	Enzima* (%)	Solubilidade (%)	
1	-1 (0,5)	-1 (0,5)	40,65	
1	-1 (0,5)	-1 (0,5)	40,34	
1	-1 (0,5)	-1 (0,5)	39,00	
2	-1 (0,5)	1 (2,5)	30,74	
2	-1 (0,5)	1 (2,5)	34,34	
2	-1 (0,5)	1 (2,5)	32,56	
3	1 (1,5)	-1 (0,5)	90,75	
3	1 (1,5)	-1 (0,5)	91,91	
3	1 (1,5)	-1 (0,5)	93,22	
4	0 (1)	0 (1,5)	28,99	
4	0 (1)	0 (1,5)	28,64	
4	0 (1)	0 (1,5)	27,42	
5	0 (1)	0 (1,5)	29,18	
5	0 (1)	0 (1,5)	30,72	
5	0 (1)	0 (1,5)	31,33	
6	1 (1,5)	1 (2,5)	25,65	
6	1 (1,5)	1 (2,5)	26,68	
6	1 (1,5)	1 (2,5)	26,75	
-		1 1	·	

^{*} sobre a massa de gelatina

Tabela 2- Análise Estatística da Solubilidade

_	Fator	Р	Efeito	
	Amido	0,001298	4,006989	
	Enzima	0,000017	-6,39634	