

UNIVERSIDADE DE PASSO FUNDO

FACULDADE DE ENGENHARIA E ARQUITETURA CURSO DE ENGENHARIA DE PRODUÇÃO

Aplicação da modelagem e simulação computacional na implementação de uma linha de montagem

Autor: Rogério da Silva Orientador: Wu Xiao Bing

INTRODUÇÃO

As melhorias nos setores produtivos, objetivando a alta performance são o propósito de análises há muito tempo. As principais ferramentas implementadas que como foco principal tem a elevação da produtividade, são as que objetivam a produção enxuta, buscando eliminar qualquer tipo de desperdício encontrado. Identificar erros na fase de planejamento é muito mais barato do que fazer após a implementação, e a simulação computacional permite identificar esses erros com antecedência.

OBJETIVO

Otimizar uma linha de montagem de carretas agrícolas utilizando a modelagem e simulação computacional.

MÉTODO DO TRABALHO

A empresa estudada, fica localizada no norte de estado do Rio Grande do Sul - Brasil, e tem como atividade principal a fabricação de máquinas e implementos agrícolas. A pesquisa será desenvolvida no setor de Engenharia de Fábrica, responsável pela implementação de produtos novos e melhorias nos processos produtivos. A figura 1 demonstra melhor o delineamento do trabalho.

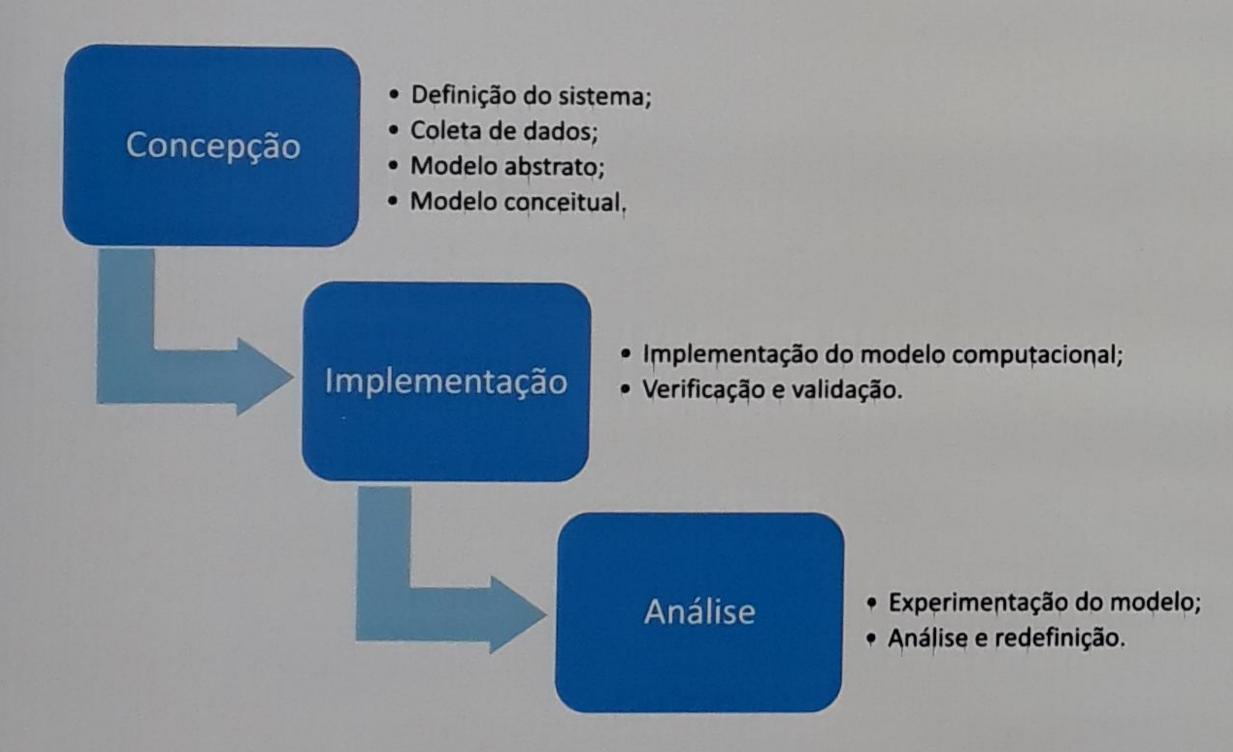
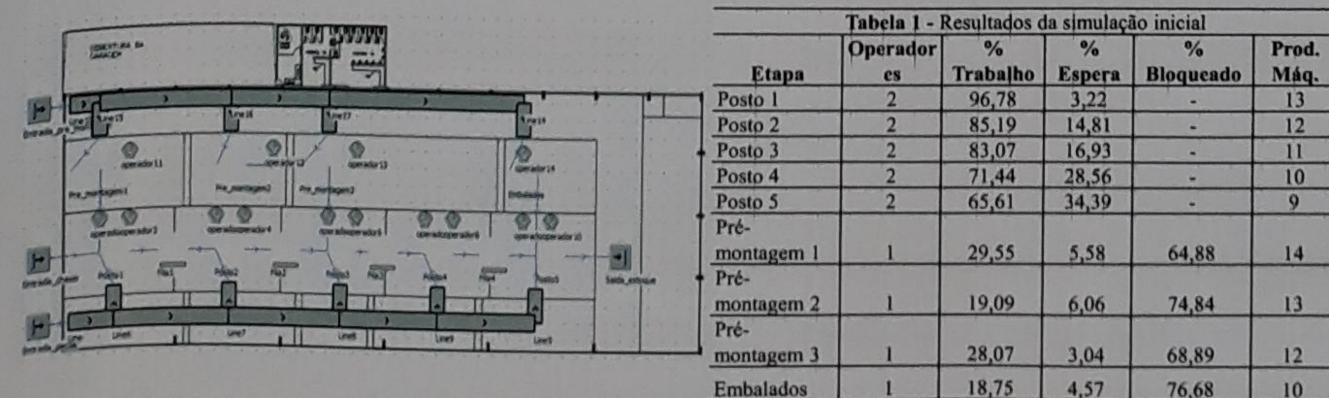


Figura 1: Metodologia aplicada

ANÁLISE E DISCUSSÃO DE RESULTADOS

Na modelagem da linha de montagem de carretas agrícolas, a preocupação de que o modelo refletisse o sistema real norteou o processo de construção do início ao fim. Portanto, já na fase de coleta de dados do processo, procurou-se envolver as pessoas que tinham conhecimento do processo produtivo para não só fornecerem as informações, mas para avaliar a modelagem do sistema, seja através do mapeamento do processo ou do software de simulação.



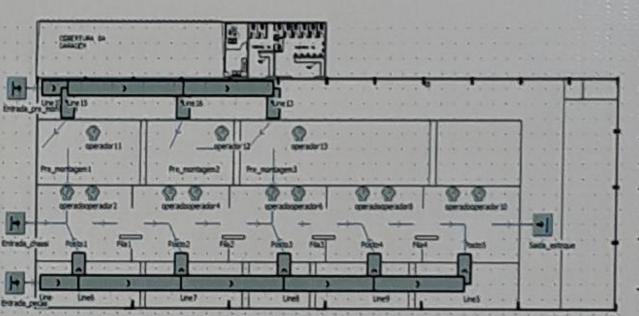

Figura 2: Modelo computacional inicial

Tabela 1: Resultados da simulação inicial

Os resultados definidos como "bloqueado" referem-se à formação de filas. Quando a operação finaliza a transformação do produto e fica impedida de enviar esse produto para a próxima operação, e formam-se as filas, o que caracteriza desperdício para a produção.

O tempo "em espera" está relacionado ao período em que a operação está parada e aguardando a finalização da operação anterior e a entrada das peças para iniciar a execução, neste caso, ela está ociosa, o que também indica desperdício para o sistema. O tempo "em trabalho" é o período efetivo de produção no qual a máquina/operador está trabalhando e transformando o produto. Diferentemente dos resultados anteriores, este não representa desperdício, mas representa valor agregado ao produto.

Para a otimização do modelo, utilizou se como base de melhoria os percentuais de espera, bloqueado e trabalho, resultantes do modelo inicial. E como pode se observar na tabela—1, resultados da simulação inicial, todas as pré-montagens estavam ociosas, ou seja, o percentual de trabalho estava baixo e o percentual de bloqueio alto.

Posto 1	2	94,69	5,31	-	16
Posto 2	2	86,59	13,41	-	15
Posto 3	2	81,06	18,94	-	14
Posto 4	2	74.54	25,46	-	13
Posto 5	2	71,89	28,11		11
Pré- montagem 1	1	91,51	0,68	7,8	17
Pré- montagem 2	1	51,21	4,48	44,31	16
Pré- montagem 3	1	79,92	5,01	15,07	15
Embalados		-	-	-	-

Tabela 2 - Resultados da otimização

Figura 3: Modelo computacional otimizado

Tabela 2: Resultados da otimização

Analisando e comparando os dois modelos simulados, podese perceber que no otimizado obteve-se um aumento no número de máquinas produzidas, ou seja, aumento no percentual trabalhado dos setores, redução nos percentuais de espera e bloqueado. Além da eliminação de um posto, redução de um operador e diminuição de investimentos.

Modelo	Inicial	Otimizado	Diferença
Média % Trabalho	55,28	78,92	42,76%
Média % Espera	13,01	12,67	-2,61%
Média % Bloqueado	71,32	22,39	-68,60%
Lead time *	15:00:00	12:46:00	-14,88%
N° trabalhadores	14	13	-7,14%
Produtividade / dia	2,93	3,45	17,14%
Investimetos	4 sistemas modulares	2 sistemas modulares	-50%

Tabela 3: Comparativo dos modelos

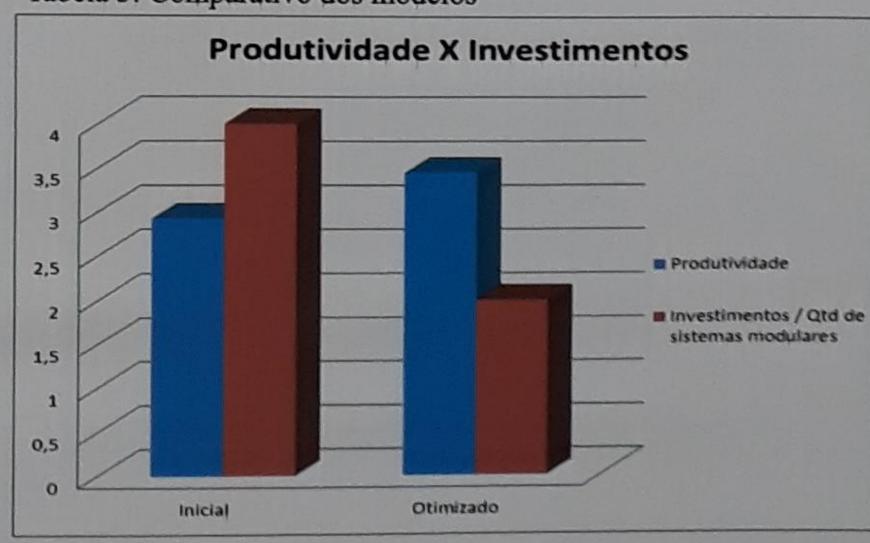


Gráfico 1: Produtividade X Investimentos

CONCLUSÃO

* HH:MM:SS

De acordo com os resultados apresentados, pode-se mensurar o ganho real: aumento de 17,14% na produtividade máquinas/dia e diminuição de 50% nos investimentos necessários, confirmando o uso da simulação como uma ferramenta importante para suportar a tomada de decisão administrativa, que auxiliou a empresa no momento da implementação.