UNIVERSIDADE DE PASSO FUNDO

Viviane Cantelli

RESISTÊNCIA À FADIGA DE ZIRCÔNIAS CIMENTADAS APÓS DIFERENTES TRATAMENTOS DE SUPERFÍCIE

Passo Fundo

2024

Viviane Cantelli

RESISTÊNCIA À FADIGA DE ZIRCÔNIAS CIMENTADAS APÓS DIFERENTES TRATAMENTOS DE SUPERFÍCIE

Tese apresentada ao Programa de Pós-Graduação em Odontologia da Faculdade de Odontologia da UPF, para obtenção do título de Doutor em Odontologia – Área de Concentração em Clínica Odontológica, sob orientação do prof. Dr. Alvaro Della Bona.

Passo Fundo 2024

Folha reservada para Ata de aprovação da Banca Examinadora Folha reservada para Ficha catalográfica

BIOGRAFIA DO AUTOR

Viviane Cantelli

Viviane Cantelli nasceu na cidade de Montauri, no Rio Grande do Sul, em outubro de 1994. Formou-se em Odontologia pela Faculdade Especializada na Área da Saúde do Rio Grande do Sul (FASURGS) em 2016. Em 2021 obteve o título de Mestre em Odontologia com área de concentração em Clínica Odontológica pela Universidade de Passo Fundo (UPF), apresentando a dissertação intitulada "Comportamento biomecânico de material para base de prótese total fabricada por impressão 3D".

AGRADECIMENTOS

Agradeço a Deus, pela oportunidade de viver ao lado da minha família e por me permitir um caminho repleto de aprendizado.

À minha família, por todo amor, incentivo e por estarem sempre ao meu lado.

Ao meu orientador, Dr. Álvaro Della Bona, pelo imenso aprendizado.

Aos colegas, Ulysses Lenz e Marcelo Tapparo Meirelles, pelos trabalhos que realizamos juntos.

À Instituição UPF, pela estrutura e suporte para o desenvolvimento deste trabalho, bem como à CAPES, por ter viabilizado meu ingresso no Curso, por meio da concessão de uma bolsa de estudos.

SUMÁRIO

LISTA DE TABELAS	10
LISTA DE FIGURAS	11
LISTA DE ABREVIATURAS	13
RESUMO	14
ABSTRACT	15
INTRODUÇÃO	16
PROPOSIÇÃO	
ARTIGO I	19
ARTIGO II	71
CONSIDERAÇÕES FINAIS	83
REFERÊNCIAS	

LISTA DE TABELAS

Tabela I.1	Table I.1: Studies in alphabetical order, reporting the fatigue method used to evaluate translucent dental zirconias.	28
Tabela II.1:	Falhas e sobrevivência para cada grupo experimental.	85

LISTA DE FIGURAS

Figure I.1	Study flowchart according to the PRISMA statement.	27
Figure II.1	Imagens representativas da superfície dos grupos controle (usinagem CAD CAM) das zircônias 3Y-TZP (A) e 5Y-PSZ (B). Magnificação x200.	80
Figure II.2	Imagem representativa de SEM (x1000) da superfície da cerâmica 3Y-TZP após silicatização. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada.	81
Figure II.3	Imagem representativas de SEM (x1000) da superfície da cerâmica 3Y TZP após jateamento com partículas de óxido de alumínio. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada.	82
Figure II.4	Imagem representativas de SEM (x1000) da superfície da cerâmica	83

	5Y PSZ após silicatização. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada.	
Figure II.5	Imagem representativas de SEM (x1000) da superfície da cerâmica 5Y PSZ após jateamento com partículas de óxido de alumínio. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada	84
Figura II. 6	Curvas de sobrevivência versus número de ciclos para os grupos 5Y.	87
Figura II. 7	Curvas de sobrevivência versus número de ciclos para os grupos 3Y.	88

LISTA DE ABREVIATURAS

CAD - *computer aided design* (desenho assistido por computador) CAM – *computer aided manufacturing* (fabricação assistida por computador) CP – corpo de prova EDS - analise composicional por espectroscopia de raios X por energia dispersiva Hz – Hertz MEV - microscopia eletrônica de varredura mm – milímetros MPa – mega Pascal N - Newton

s-segundos

RESUMO¹

O presente estudo teve como objetivo (1) revisar, sistematicamente, a literatura com relação aos métodos de fadiga utilizados para avaliar zircônias translúcidas, correlacionando as falhas àquelas clinicamente reportadas e (2) avaliar a taxa de sobrevivência à fadiga de cerâmicas à base de zircônia unidas a cimento resinoso após diferentes tratamentos de superfície. Uma revisão sistemática foi conduzida sem restrição de tempo de publicação nas bases de dados PubMed e Scopus, seguindo o protocolo PRISMA-P e registrado no PROSPERO. Para o ensaio de fadiga, estruturas de zircônia (3Y-TZP e 5Y-PSZ) foram confeccionadas e cimentados sobre G10 após diferentes tratamentos de superfície (usinagem por CAD CAM, silicatização e jateamento com partículas de óxido de alumínio). O ensaio de fadiga foi realizado com uma carga de 120 N, aplicada à superfície cerâmica com um pistão esférico de metal de aço inoxidável (diâmetro 6 mm), com frequência de 3 Hz em água destilada a 37°C. O teste foi interrompido após 10^4 , 10^5 , 5×10^5 , 10^6 e 1.5 x 10^6 ciclos e a presença ou ausência de falha foi observada utilizando transiluminação. Este estudo contribui para o entendimento dos métodos de avaliação de fadiga em zircônias translúcidas e sua correlação com falhas clínicas, além de fornecer informações sobre a influência dos tratamentos de superfície na resistência à fadiga.

Palavras-chave: Zircônia translúcida, Odontologia, Materiais dentários, Fadiga.

¹ Viviane Cantelli

ABSTRACT²

The present study aimed to (1) systematically review the literature regarding fatigue methods used to evaluate translucent zirconia, correlating failures with those clinically reported and (2) evaluate the fatigue survival rate of zirconia-based ceramics bonded to resin cement after different surface treatments. A systematic review was conducted with no limit on publication time using the PubMed and Scopus databases, following the PRISMA-P protocol and registered in PROSPERO. For the fatigue test, structures made of different types of zirconia (3Y-TZP and 5Y-PSZ) were manufactured and cemented on G10 after different surface treatments (CAD-CAM machining, silicatization and airborne particle abrasion using aluminum oxide particles). The fatigue test was carried out with a load of 120 N, applied to the ceramic surface with a spherical stainless steel metal piston (diameter 6 mm), and a frequency of 3 Hz in 37°C distilled water. The test was momentarily stopped after 10^4 , 10^5 , 5×10^5 , 10^6 and 1.5×10^6 cycles to evaluate for failure using transillumination. This study contributes to the understanding of fatigue assessment methods in translucent zirconia and its correlation with clinical failures, in addition to providing information on the influence of surface treatments on the fatigue resistance.

Keywords: Translucent zirconia, Dentistry, Dental Materials, Fatigue.

² Fatigue in translucent zirconia

INTRODUÇÃO

Um dos principais desafios da reabilitação oral é alcançar resultados satisfatórios relacionados a função e a estética. Para isso, é importante o entendimento das propriedades de cada material disponível, permitindo assim a seleção mais adequada para enfrentar cada desafio clínico específico. As primeiras zircônias parcialmente estabilizadas por ítria passaram por diferentes estratégias para resolver a deficiência relacionada as propriedades ópticas, buscando proporcionar maior translucidez e a possibilidade do uso em restaurações monolíticas (ZHANG *et al.*, 2016; ZHANG E LAWN, 2018) e como resultado foi desenvolvido as zircônias translúcidas.

A utilização clínica da zircônia translúcida (GARDELL et al., 2021) representa um significativo avanço na odontologia restauradora, pois apresenta capacidade de proporcionar uma estética satisfatória aliada a boas propriedades mecânicas. É crucial compreender o comportamento mecânico e possuir conhecimento detalhado das propriedades para assegurar a durabilidade e eficácia clínica dos tratamentos cerâmicos. Isso inclui investigar os efeitos e alterações superficiais e estruturais resultantes dos tratamentos de superfície necessários para a cimentação adesiva de restaurações à base de zircônia monolítica, permitindo prever seu desempenho clínico.

Clinicamente, as restaurações dentárias precisam suportar os desafios da cavidade bucal, como variações de pH, umidade, mudanças de temperatura, tensões induzidas pela carga mastigatória e hábitos parafuncionais. Assim, as restaurações ficam suscetíveis à corrosão química e a mecanismos de fadiga, que podem reduzir a resistência do material e sua longevidade (Della Bona, 2009).

Para compreender os desafios intra-orais, diversos testes laboratoriais estão disponíveis para avaliar o comportamento mecânico de materiais, sendo os testes de fadiga essenciais para simular as condições do ambiente oral. Esses testes visam prever possíveis falhas por "fadiga" (WISKOTT *et al.*, 1995; BARAN *et al.*, 2001), como fraturas, desgaste ou deformações (BARAN *et al.*, 2001), quando os materiais e estruturas são submetidos a cargas e estresse ao longo do tempo. Nesse sentido, esse estudo foi proposto para investigar os métodos de avaliação de fadiga em zircônias translúcidas e a correlação com falhas clínicas, além de fornecer informações sobre a influência dos tratamentos de superfície na resistência à fadiga das restaurações.

PROPOSIÇÃO

Esse estudo foi delineado para analisar o comportamento a fadiga de zircônia translúcida tendo como objetivos:

- Avaliar, de forma sistemática, a literatura com relação aos métodos de fadiga utilizados, associando as falhas resultantes com as reportadas clinicamente, testando a hipótese de que independentemente do método de fadiga utilizado, as falhas resultantes dos ensaios de fadiga são semelhantes as reportadas clinicamente.
- Avaliar a taxa de sobrevivência à fadiga de cerâmicas a base de zircônia (3Y-TZP e 5Y-PSZ) unidas ao cimento resinoso após diferentes tratamentos de superfície (usinagem por CAD CAM, silicatização e jateamento com partículas de óxido de alumínio), testando as hipóteses de que (1) os tratamentos de superfície resultam em taxa de sobrevivência à fadiga semelhante para zircônias monolíticas (3Y-TZP e 5Y-PSZ) unidas ao cimento resinoso e que (2) a 3Y-TZP apresenta maior taxa de sobrevivência à fadiga do que a 5Y-PSZ quando aderidas a um cimento resinoso.

ARTIGO I FATIGUE METHODS FOR EVALUATING TRANSLUCENT DENTAL ZIRCONIA ³

Abstract

Objective. To investigate fatigue methods for the evaluation of translucent zirconia and to associate *in vitro* failures with clinically reported ones.

Data. Studies published in English that used fatigue tests on dental translucent zirconia.

Sources. Two databases (MEDLINE/PubMed and Scopus) were electronically searched without any restriction on year of publication.

Study selection. A total of 4555 studies were identified. After removal of duplicates (78) and irrelevant articles (4316) that did

³ Viviane Cantelli, Marcelo Tapparo Meirelles, Alvaro Della Bona⁻

^{*} Artigo submetido para revista Journal of Dentistry.

not meet the inclusion criteria, 161 articles were considered eligible based on their titles and abstracts. These articles were fully read, leading to the inclusion of 41 studies in the review.

Results. The most widely used fatigue method for evaluation of translucent zirconia was step-stress (18 articles), followed by staircase (seven articles), and step-wise (two articles). Most studies had been conducted in a wet environment with the use of a stainless steel piston to apply load to cemented structures on a dentin-like substrate. Most fracture analyses indicated the fracture originated on the cementation or contact surface where the load was applied. Moreover, studies that utilized anatomical structures (dental crowns) reported fractures starting at the cervical margin of the crowns.

Conclusion. Most studies used the step-stress method. Only three studies reported failures similar to those found in clinical trials that used translucent zirconia restorations.

Clinical Significance. The study findings can assist on correlating clinical failures to the ones observed in vitro.

Keywords: Translucent zirconia, Dentistry, Dental Materials, Fatigue.

1. Introduction

Dental ceramics have been widely used in dental restorations, requiring constant research and development for the qualification of materials and fabrication methods. *In vitro* studies using structures that mimic serviceable conditions, such as fatigue tests, are crucial to show trends in mechanical behavior and structural longevity [1–9].

Zirconia-based ceramics, or simply zirconias, are broadly used in the health sector, including dentistry, owing to their high biocompatibility and mechanical properties [1, 10]. In addition to zirconium dioxide (ZrO₂), they contain a stabilizing agent, often yttrium oxide (Y₂O₃), which provides them with distinct mechanical properties when compared to other dental ceramics [1]. Consequently, their fatigue behavior differs from that of other dental ceramics [5].

The first partially yttria-stabilized zirconias (3Y-TZP) underwent different strategies to correct deficiencies associated with optical properties, with the aim of enhancing translucency and allowing for their use in monolithic restorations [11, 12]. Translucent zirconias were then developed, showing advantages such as reduced tooth preparation, smaller wear on the antagonist when compared to initially marketed zirconias, simpler procedures than those required for the fabrication of multilayered restorations on opaque zirconia structures, elimination of defects from ceramic veneers, and shorter fabrication time, while maintaining biocompatibility and good mechanical properties [10]. Evidently, this innovation urged researchers to investigate the various aspects of this new material, but the mechanical behavior in service is of utmost importance [5, 13–15]. The assessment of materials and structures under fatigue plays a key role in predicting their clinical behavior [5, 15, 3, 4. 6]

Numerous fatigue methods have been employed to assess translucent zirconias, but no critical analysis has been performed to verify the application of such methods in clinical practice. This study systematically reviewed papers in which fatigue methods were used to assess translucent zirconias, describing important results and providing information on the parameters used so as to evaluate fatigue methods, correlating *in vitro* failures with clinical ones and testing the hypothesis that, regardless of the fatigue method, those failures resulting from fatigue tests would be similar to those reported in clinical practice.

2. Materials and Methods

This review was conducted systematically to answer the following research questions: "What are the most widely used fatigue methods and parameters to evaluate translucent zirconia?" "Are *in vitro* fatigue failures similar to clinically reported failures?"

2.1. Protocol and registry

The protocol for this study followed the PRISMA-P statement for systematic reviews [16] and was registered in PROSPERO under ID CRD42024504747 on February 3, 2024.

2.2. Eligibility criteria

This review included studies published in English that carried out fatigue tests on translucent zirconia for use or potential use in restorative dentistry. Studies on other materials or other types of zirconia, studies on materials and/or structures not applied to restorative dentistry, literature reviews, manufacturer's reports, commentaries, and conference abstracts were excluded from this review.

2.3. Sources of information and search strategy

Two databases (MEDLINE/PubMed and Scopus) were electronically searched without any restriction on year of

23

publication. The last search occurred on February 22, 2024. The search strategy was based on PubMed MeSH terms and adapted for each database.

2.4. Selection of sources of evidence

The search was initially performed using the Mendeley reference software. Two researchers (V.C. and M.T.M.) identified the articles independently by analyzing their titles and abstracts for relevance and eligibility criteria. The retrieved records were classified as "include," "exclude," or "uncertain." Full-text articles from the "include" and "uncertain" records were selected for later eligibility screening by the same independent researchers. Discrepancies in the screening of titles/abstracts and full-text articles were resolved through discussion. In case of disagreement, a third reviewer (A.D.B.) was consulted for their opinion.

2.5. Data tabulation

Those articles that met the inclusion criteria were critically evaluated by two independent reviewers (V.C. and A.D.B.). After selection, the following information was collected from each article:

- Publication details: authors, year of publication, and journal.

- Characteristics of in vitro studies.

- Type of translucent zirconia assessed.

- Details about the fatigue method.

2.6. Synthesis of results

This review primarily examined the fatigue methods used to evaluate translucent zirconias in dentistry, correlating *in vitro* failures with clinical failures. Clinical studies on monolithic zirconia crowns showing structural failures indicated that the fracture had originated on the cervical margin of the crowns [17, 18].

This study presents a descriptive analysis, taking the study design into consideration, as well as the characteristics of the materials (translucent zirconias) and the failure method used (Table 1).

3. Results

Figure 1 shows the study flowchart. Initially, 4,555 potentially relevant articles were retrieved (PubMed: n = 3,027; Scopus: n = 1,528). After removal of duplicates (78) and irrelevant articles (4,316) that did not meet the inclusion criteria, 161 articles were considered eligible based on their titles and abstracts. These articles were fully read, leading to the inclusion of 41 studies in the review.

Different types of specimens were employed for fatigue analysis. Out of the 41 studies included in this review, 21 assessed anatomical specimens, such as conventional single-unit crowns [19–35], endocrowns [36, 37], and fixed bridges [38, 39]. The remaining studies (n= 20) utilized non-anatomical specimens, such as discs [40–53], bars [54–57, 15,], and square plates [58].

Figure I.1: Study flowchart according to the PRISMA statement.

Study	Objective	Translucent	Fatigue parameters
		zirconia	
	To assess the	5Y-TZP	Step-stress fatigue method,
	probability	(Prettau	at 10 Hz, using three load
	of survival	Anterior,	profiles: mild, moderate,
	of crowns	Zirkonzahn,	and aggressive. Each
ŝ	made with a	Bruneck,	profile started at 300 N and
202	3Y-TZP, a	Italy)	finished at 3,000 N. The
	5Y-TZP, and		mild profile increased the
t al [9]	a lithium	3Y-TZP	load (200 N) every 20,000
0 6	disilicate	(Prettau	cycles up to 320,000
abe		Zirkonzahn,	cycles; the moderate
ΡY		Bruneck,	profile increased the load
		Italy)	(250 N) every 15,000
		•	cycles up to 195,000
			cycles; and the aggressive
			profile increased the load
			(300 N) every 10,000
			cycles up to 110,000
			cycles.

Table I.1: Studies in alphabetical order, reporting the fatigue method used to evaluate translucent dental zirconias.

Alves <i>et al.</i> , 2021 [20]	To evaluate and compare the fatigue performance of monolithic crowns manufacture d from glass or polycrystalli ne CAD- CAM ceramic systems adhesively luted to a	Translucent yttrium fully stabilized polycrystalline zirconia (Trans YZ, Prettau Anterior).	Step-stress fatigue, in water, with a stainless steel sphere ($\emptyset = 40 \text{ mm}$) loading at 20 Hz starting from 200 N for 5,000 cycles to adjust the testing assembly, followed by sequential increments with a step size of 100 N at each 10,000 cycles until failure.
Antón <i>et al.</i> , 2023 [53]	dentin analog. To examine the effect of high-speed sintering and the preshading of blanks (monochrom e versus multilayer) on the fatigue behavior of 4Y-TZP ceramics.	4Y-TZP (Zolid DRS) 4Y-TZP (Zolid Gen-x) 4Y-TZP (Ceramill Zolid HT+PS)	Five different dynamic fatigue test conditions (P1- P5), at 10 Hz, in dry conditions. P1-P3 used step-stress protocols: P1- 50 N for 5,000 cycles; P2- 10 N for 1,000 cycles; and P3- 5% for 5,000 cycles. P4 used constant force (720 N). P5 used different constant load levels.

Antunes et al., 2018 [21]	To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y- TZP crowns and an epoxy resin.	Y-TZP ceramic (IPS e.max ® ZirCAD Ivoclar- Vivadent/ Schaan, Liechtenstein)	A total of 2×10^6 thermomechanical cycles were performed, with a stainless steel piston ($\emptyset =$ 4 mm), at 4 Hz, with 100 N load. A total of 5,555 thermal cycles (5 °C – 55 °C, in a 60-s cycle, 30-s dwel time) per group.
Arcila <i>et al.</i> , 2021 [40]	To characterize the microstructu re of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength.	3Y-TZP (Vita YZ HT) 4Y-PSZ (Vita YZ ST) 5Y-PSZ (Vita YZ XT)	Step-stress fatigue test under distilled water, using a flat circular tungsten piston ($\emptyset = 1.6$ mm), at 20 Hz, with a minimum tension of 10 MPa and the maximum tension desired for each stage of the cycle. Initial stress (200 MPa) for 5,000 cycles, then additional incremental steps of 25 MPa for 10,000 cycles starting from 400 MPa until specimen fracture.

	To evaluate	4Y-TZP (IPS	Step-stress fatigue, in
	the effect of	e.max ZirCAD	water, with a flat circular
	shading	MT BL,	tungsten piston ($\emptyset = 1.6$
	procedures	Ivoclar-	mm), at 20 Hz, with initial
	on the	Vivadent AG,	strength of 100 MPa for
	fatigue	Schaan,	5,000 cycles to
0	performance	Liechtenstein)	accommodate
202	and optical		piston/specimen, followed
ſ., J	properties of		by additional incremental
t a	an yttria-		steps of 25 MPa for 10,000
ui e	stabilized		cycles/steps starting from
zar]	tetragonal		200 MPa, until complete
Au [41	zirconia		failure.
· —	polycrystal		
	ceramic		
	(4Y-TZP)		

	To inspect	Highly	Step-stress fatigue method,
	the	translucent	the load was applied on the
	mechanical	zirconia	tooth palatal surface at a
	fatigue	polycrystals	45-degree angle using a
	behavior of	(Prettau	stainless steel ball (\emptyset =
	an implant-	Anterior)	6mm), in water, at 10 Hz.
	supported		Each profile started at
	restorative		5,000 cycles on a relatively
	system using		low load (200 N).
	polyether		Subsequently, 10,000
	ether ketone		cycles were performed at
	(PEEK) and		progressive load levels
	yttria		(step-size) of 50 N starting
	partially		at 250 N until failure
	stabilized		detection.
	zirconia		
	polycrystals		
	(YZ) as		
	materials for		
	customized		
	definitive		
	implant-		
_	supported		
[22	hybrid		
50	abutments,		
202	supporting		
ı <i>l.</i> ,	two types of		
et a	all-ceramic		
or e	restorations:		
juj	translucent		
I-Jí	zirconia		
ose	(1Z) and		
arb	litnium		
В	disilicate		
	(LD)		
	monolitnic		
	crowns		

	To evaluate	3Y-TZP	Step-stress fatigue method,
3]	the	(Zirconn	in water, by sliding a
[23	reliability	Translucent.	tungsten-carbide indenter
24	and failure	Vipi)	$(\emptyset = 0.7 \text{ mm})$ at a
20	modes of	· · ·	frequency of 2 Hz, using
ıl.,	ultrathin (0.5	5Y-PSZ	three different load profiles
et 6	mm) lithium	(Cercon XT.	until failure or survival.
ch e	disilicate.	Dentsply	ranging from 50 N up to
all	translucent	Sirona)	700 N.
ar J	and ultra-	Sirona)	,0011
az	translucent		
ialc	zirconia		
3en	crowns for		
I	posterior		
	teeth		
	restorations.		
	To evaluate	5Y-PSZ (IPS	Step-stress fatigue test
	the effect of	e.max ZirCAD	under water, at 20 Hz,
	distinct	MT Multi,	starting with a load of 100
	surface	Ivoclar	N for 5,000 cycles to
_	treatments	Vivadent,	adjust the sample/piston
42	on the	Schaan,	contact, then followed
11	fatigue	Liechtenstein)	incrementing steps of 50 N
202	behavior		for 10,000 cycles at each
L., 2	(biaxial		load step until failure.
t a	flexural		
ss e	fatigue		
ene	testing) and		
drij	surface		
Ro	characteristi		
re-	CS		
ope	(topography		
Ű	and		
	roughness)		
	of a 5Y-PSZ		
	ceramic.		

Dal Piva <i>et al.</i> , 2021 [24]	To evaluate the effect of minimal tooth preparation on the mechanical behavior, reliability and translucency of posterior monolithic ceramic crowns.	High translucency zirconia HT (Vita Zahnfabrik, Bad Säckingen, Germany)	Step-stress fatigue test, in water, with stainless steel $(\emptyset = 6 \text{ mm})$ piston at 10 Hz. Samples randomly distributed into three profiles: mild, moderate, and aggressive in the ratio of 3:2:1, according to the load increase and number of cycles (load profiles starting at 200 N and finished at 1,500 N) until failure.
De Carvalho <i>et al.</i> ,2022 [43]	To evaluate the effect of four different finishing procedures on the fatigue strength of a fully stabilized zirconia (5Y-FSZ) material.	5Y-FSZ (Katana UTML, Kuraray Noritake)	Staircase fatigue method, at 20 Hz, for 10,000 cycles. The first specimen was tested at 60% of stress level in the monotonic test, with subsequent step sizes of 5%, either added or subtracted according to the survival or failure, respectively.

Demachkia <i>et al.</i> ,2023 [36]	To evaluate the effect of the remaining tooth structure and different CAD/CAM materials on the fatigue performance and failure mode of endodontical ly treated premolars reactored with	Ultra- translucent zirconia 5Y- PSZ (KATANA UTML)	Stepwise fatigue method, in distilled water, with a cylindrical stainless steel piston ($\emptyset = 6$ mm), at 20 Hz, with initial load of 200 N, and a constant increment of 100 N, with 10,000 cycles per step until fracture.
	endocrowns.	XX: 1	
Elragal <i>et al.</i> , 2023 [55]	To investigate the effect of acidic media, including beverages and gastric fluids on flexural strength and fatigue of CAD-CAM materials	High translucent zirconia (Ceramill Zolid HT+)	The fatigue was conducted using a total of 10^6 cycles, in distilled water, of 50 N loaded a sliding plate for 0.5 s and then leveled off for another 0.5 s so that the total duration of each fatigue cycle was 1 s.

	To investigate	(IPS e.max ZirCAD,	Staircase fatigue method was determined for
5 [44]	the influence	Ivoclar	500,000 cycles, with a
	of the	Vivadent,	steel piston flat tip (\emptyset =
016	loading	Liechtenstein)	1.4 mm). Sinusoidal
, 5	frequency on		loading was applied with
al.	the zirconia		amplitude ranging from 10
ı et	fatigue		MPa to the maximum
age	strength.		tensile stress. Four
Fr			different frequencies were
			tested: 2 Hz (control
			group), 10 Hz, 20 Hz, and
	T 1	V DOZ (IDC	40 HZ.
Freitas <i>et al.</i> , 2023 ^a [45]	10 evaluate	Y-PSZ (IPS	Step-stress fatigue method
	roughness	e.max ZIICAD	using a cylindrical steel piston hemisphere $(Q - 40)$
	translucency	wii, ivociai)	mm) in water at 20 Hz
	fatique		loads starting at 200 N per
	failure load.		5.000 cycles were initially
	and number		applied, then load
	of cycles for		increments of 50 N every
	fatigue		10,000 cycles until
	failure of an		specimen failure.
	advanced		-
	lithium		
	disilicate		
	and three		
	other		
	ceramics for		
	monolithic		
	restorations		
	To evaluate	4Y-PSZ (IPS	Step-stress fatigue
------	---------------	---------------	---
	the surface	e.max	test in water, with a flat
[0	properties	ZirCAD)	circular tungsten piston (Ø
[46	and fatigue	,	= 1.6 mm), at 20 Hz, for an
3b	mechanical		initial stress of 100 MPa
202	behavior of		for 5,000 cycles, then 200
2	an advanced		MPa for 10,000 cycles.
t al	lithium		Thereafter, increments of
S 6	disilicate		25 MPa were added every
sita	ceramic in		10,000 cycles until
Fre	comparison		specimen failure (fracture).
	to lithium		
	disilicate		
	and zirconia.		
	To evaluate	YZ (yttria-	Stepwise fatigue method,
	the effect of	stabilized	in distilled water, using a
	surface	tetragonal	cylindrical steel piston
	roughness	zirconia	with flat tip ($\emptyset = 1.6 \text{ mm}$),
	(polished vs.	polycrystal -	at 20 Hz, starting with a
	CAD/CAM	VITA YZ T)	load of 20 N for 5,000
	milling		cycles, followed by
58]	roughness		constant load increases of
10	simulation)		20 N per step (1.e. 40, 60,
02	on the		$80, 100 \dots$) at a maximum
	Tatigue		of 10,000 cycles each step
t al	benavior of		until fracture of the
i e	monolitmic		specimen.
ard	dental		
liu	ceramic		
9	restorations		
	d hy		
	CAD/CAM.		

	To evaluate	Monolithic	The test was carried out
	the post-	translucent	using dynamic fatigue
	fatigue load-	zirconia	method, in distilled water
	to-failure	material,	at 37 °C, with spherical
	and failure	Initial®	tungsten carbide piston (Ø
	modes of	Zirconia Disks	= 6 mm), at 5 Hz, for
20	endodontical	HT (GC	600,000 cycles, with 10-50
20	ly treated	Dental,	N at 45° angle to the long
al.,	premolar	Europe).	axis of the tooth.
et i	teeth		
eh	restored with		
un	endocrowns		
ssc 7]	fabricated		
Ha [37	from		
	different		
	CAD/CAM		
	materials.		
	To evaluate	3Y-TZP (Lava	Staircase fatigue method,
	the flexural	Plus, 3M	at 2 Hz, for 6,000 cycles.
	strength (FS)	ESPE);	Initial load was 50% of the
	degradation		maximum FS of the
	of newer	4Y-PSZ	material. Stress amplitude
5	zirconia	(Katana	used 50% of the standard
[50	materials	STML,	deviation of the maximum
20	compared to	Kuraray);	FS. Tests were conducted
.20	more		sequentially with applied
al.	traditional	5Y-PSZ	load values increasing or
et	tetragonal	(Katana	decreasing by 20%
nan	zirconia	STML,	according to the result
nlc	materials.	Kuraray;	(failure or survival) from
Η			the previous specimen.
		5Y-PSZ (Lava	
		Esthetic, 3M	
I	1	ESPE)	1

	To test the	3Y-TZP - (T)	Three sten-stress fatigue
	impact of	translucent).	protocols (P1-P3):
	three sten-	transfacent),	P1- L oad increased by 50
[5]	stress	4 Y-T7P - (FT·	N every 5 000 cycles until
[] []	protocols on	extra	fracture:
02]	the fatigue	translucent).	P2- Load increased by 5%
, 5	hehavior of	transiteent),	every 5 000 cycles until
al.	$two 3V_{-}$	5Y-T7P -	fracture:
et	T7P one	(HT: high	P3 Load increased by 10
nan	4V TZP and	(III. IIIgii translucant)	N avery 1 000 evelos until
erm	41-1ZF and one 5V T7P	Matorials are	fracture
Je	olle JI-IZF	from	fracture.
	ziicollia	II UIII Dritidanta	
	materials.	(Compone)	
	Th.	(Germany)	
		Y-PSZ (IPS	Cyclic loading was
	determine	e.max Zir-	performed with the
	the fracture	CAD MT for	specimens immersed in
	resistance of	CEREC,	room-temperature water,
_	chairside	Ivoclar	for a total of 200,000 load
25	CAD-CAM	Vivadent)	cycles, at 1 Hz with a load
3 [zirconia		of 20 N.
202	crowns for a		
ľ., 1	mandibular		
t a	first molar		
<i>a</i> 0	without		
ado	occlusal rest		
Jur	and with		
•	four		
	different rest		
	seat designs		

	To compare	Prettau	The fatigue test was
	the integrity	Zirconia.	performed using steel ball
	of zirconia	Zirkonzahn	$(\emptyset = 5 \text{ mm})$ in distilled
	lithium	Zirkonzumi	water at 37 °C. Three
	disilicate		specimens from each group
	and ziroonio		ware loaded for 10 000
	and zircoma-		were loaded for 10,000
	reinforced		cycles, and the other three
	litnium		specimens were loaded for
	silicate		50,000 cycles, using 250 N
6	CAD-CAM		maximum compressive
01	crowns after		load at 1,000 N/s loading
;	being		rate and at 2 Hz.
al	subjected to		
i eı	cyclic		
car	loading and		
shl []	then		
Ka [2€	subjected to		
	static		
	loading until		
	fracture.		
	fracture. To	3Y-PSZ (Lava	The fatigue test was
	fracture. To determine if	3Y-PSZ (Lava Plus; 3M	The fatigue test was performed using a stainless
	fracture. To determine if surface	3Y-PSZ (Lava Plus; 3M ESPE, St.	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in
	fracture. To determine if surface treatment	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN).	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz,
	fracture. To determine if surface treatment and cement	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN).	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for
	fracture. To determine if surface treatment and cement selection	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100.000 cycles.
	fracture. To determine if surface treatment and cement selection affect the	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
6	fracture. To determine if surface treatment and cement selection affect the fracture load	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
2019	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
1, 2019	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
t al., 2019	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia (3Y-PSZ)	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
n <i>et al.</i> , 2019	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia (3Y-PSZ), translucent	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
'son <i>et al.</i> , 2019	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia (3Y-PSZ), translucent zirconia	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
.awson <i>et al.</i> , 2019 27]	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia (3Y-PSZ), translucent zirconia	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
Lawson <i>et al.</i> , 2019 [27]	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia (3Y-PSZ), translucent zirconia (5Y-PSZ), or lithium	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
Lawson <i>et al.</i> , 2019 [27]	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia (3Y-PSZ), translucent zirconia (5Y-PSZ), or lithium disilicata	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8$ mm), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.
Lawson <i>et al.</i> , 2019 [27]	fracture. To determine if surface treatment and cement selection affect the fracture load of traditional zirconia (3Y-PSZ), translucent zirconia (5Y-PSZ), or lithium disilicate groups	3Y-PSZ (Lava Plus; 3M ESPE, St. Paul, MN). 5Y-PSZ (Lava Esthetic; 3M ESPE)	The fatigue test was performed using a stainless steel ball ($\emptyset = 8 \text{ mm}$), in water at 24 °C, at 1 Hz, with load of 100 N for 100,000 cycles.

	To evaluate	3Y-TZP	Staircase fatigue method.
	the fatigue	blocks	Loading was applied at 10
	behavior of	(Zenostar T,	Hz for 10 ⁶ cycles. The load
[/	zirconia	Wieland,	increment was 5% of the
[5,	specimens	Germany)	peak value (60% of the
23	with		fracture strength),
20	microgroove		increasing or decreasing
ıl.,	d surfaces		according to the survival
et u	formed by		or failure of the previous
Li	femtosecond		sample. Eight pairs of
	laser is		specimens with opposite
	reported		results (fracture or
			survival) were observed.
	To evaluate	Multilayered	Step-stress fatigue method,
	the effect of	zirconia	with tungsten steel ball
	low-	(Meiying	indenter ($\emptyset = 13 \text{ mm}$) in
	temperature	functional	artificial saliva
	degradation	multilayered	environment at 37 °C, at
	on the	zirconia,	10 Hz, with a minimum
8]	fatigue	UPCERA,	load of 6.3% and a
[2:	performance	China)	maximum load of 11.3%
24	of the novel		for the first step, and 1 \times
20	"strength &	3YZir (ST,	10 ⁴ cycles for each step.
al.,	shade	UPCERA,	For unfractured specimens,
et i	gradient"	China)	the maximum load of each
Li	multilayered		step was increased by 5%
	zirconia	5Y-Zir (TT,	increment until crown
	restorations.	UPCERA,	fracture.
		China)	

	To compare	Monolithic Y-	Staircase fatigue method,
	file-splitting	TZP (IPS	in water, at 20 Hz, for
	multilayer	e.max ZirCAD	750,000 cycles. Sinusoidal
	(fused and	- Ivoclar	loading started at 60% of
	cemented)	Vivadent)	the flexural strength. The
	with		test was conducted
	monolithic		sequentially, increasing or
	Y-TZP on		decreasing the maximum
	the fatigue		applied stress by a fixed
	flexural		load increment
_	strength and		(approximately 10% of the
[47	finite		initial strength) according
61	element		to whether the previous
20	analysis		tested specimen survived
<i>L.</i> ,	stresses.		or failed. If the specimen
et a			failed before reaching the
ti e			750,000 cycles, the stress
nat			level was decreased by one
nio			step size for the next
urcl			specimen testing. In case
M			of survival specimen, the
			stress level was increased
			by one step size for the
			next testing specimen.

	To evaluate the fatigue failure load, number of cycles until failure and survival probability of partially	Zenostar T, Wieland Dental, Ivoclar Vivadent IPS e.Max ZirCAD MT Multi, Ivoclar Vivadent	Step-stress fatigue method using a hemi-spherical stainless steel piston ($\emptyset =$ 40 mm), in water, at 20 Hz, for 10,000 cycles at each load step, starting with an initial load of 600 N and followed by progressive load levels of
Machry <i>et al.</i> , 2021 [48]	(FSZ) and fully- stabilized (FSZ) polycrystalli ne zirconia specimens with different thicknesses adhesively cemented onto foundations with distinct elastic moduli.		until failure detection.
Marini <i>et al.</i> , 2023 [38]	To evaluate the fatigue behavior of strength- graded zirconia polycrystals used as monolithic three-unit implant- supported prosthesis.	Zirconia graded 3Y- TZP/5Y-TZP (IPS e.max® ZirCAD PRIME); Zirconia graded 4Y- TZP/5Y-TZP (IPS e.max® ZirCAD MT Multi)	Step-stress fatigue method, in water, with stainless steel piston rounded active portion ($\emptyset = 6$ mm), at 20 Hz, 20,000 cycles were performed at sequential increments of stress levels of 200 N (10% of the mean fracture strength) until failure occurred.

Nakamura <i>et al.</i> , 2018 [29]	To develop a clinically relevant load-to- failure test in combination with fatigue treatments involving thermal and mechanical cycling to evaluate the fracture resistance of monolithic zirconia	Lava Plus Zirconia, 3M/ESPE	Mechanical cycling was performed in pure water at 37 ± 1 °C, using an inverse V-shaped two-plane steel indenter with an angle of 160° , at 14.5 Hz, loaded between 50 N and 300 N for 2.4×10^6 cycles.
Nishioka <i>et al.</i> , 2018 [49]	To evaluate the fatigue strength of different ceramic materials indicated for monolithic restorations.	High translucent Y- PSZ (YZ HT Vita Zahnfabrik)	Staircase fatigue method, in water for 100,000 cycles at 10 Hz. The first specimen was tested at 60% monotonic load-to- failure. The step size was 5% of the initial stress level, according to survival or failure of the previous specimen.

	То	4Y-PSZ	A cyclic load was applied
	characterize	IPS e.max	with a cylindrical tungsten
	the elastic	ZirCAD MT.	piston ($\emptyset = 1.6$ mm), in
	modulus and	Ivoclar:	water, at 20 Hz, generating
	Poisson's	Schaan.	an initial stress of 60 MPa
	ratio of a	Liechtenstein)	up to 5,000 cycles to adjust
	resin cement		the sample/piston contact.
	with distinct		followed by increments of
	viscosities.		25 MPa at each step of
	and to		10.000 cycles until failure.
50]	evaluate		
3 [:	their impact		
:02	on the static		
;;	and fatigue		
t al	strength of a		
r ei	translucent		
ese	zirconia		
ska	(4Y-PSZ)		
Pac	after air-		
	abrasion		
	surface		
	treatment		
	To evaluate	Translucent	Step-stress fatigue method
	the fatigue	zirconia	using a hemispherical
	behavior of	(Prettau	stainless steel piston ($Ø =$
	monolithic	Anterior,	6mm), in water, at 20 Hz,
_	translucent	Zirkonzahn	initial sinusoidal load
51	zirconia	SRL)	ranging from a minimum
6	polycrystals		of 10 N to the maximum
201	(TZ) and		load starting at 200 N for
l., 1	lithium		5,000 cycles, followed by
t a	disilicate		step size of 200 N until
caε	glass-		2,800 N at a maximum of
reiı	ceramic		10,000 cycles/step.
Pe	(LD) bonded		Specimens were loaded
	to different		until failure or to a
	substrates		maximum of 135,000
			cycles at 2,800 N.

	То	IPS e.max	The fatigue was conducted
	investigate	ZirCAD,	with steatite balls ($\emptyset = 12$
	the fatigue	Ivoclar-	mm), at a frequency of 1.6
	and fracture	Vivadent	Hz (simulated mouth
	resistance of		opening: 2 mm), with a
	different		load of 50 N for 1.2×10^6
	CAD/CAM		cycles. During mechanical
	materials as		loading specimens were
[implant- or		thermally aged (5-55 °C, 2-
[3(tooth-		min cycle) for $2 \times 3,000$
17	supported		cycles in distilled water.
20	molar		
л <i>L.</i> ,	crowns with		
et d	respect to		
Sis	the clinical		
Pre	procedure		
	(screwed/bo		
	nded		
	restoration).		
	to evaluate	Zircônia IPS	The dynamic mechanical
	the effect of	e.max ZirCAD	loading was conducted
_	cyclic	LT (Ivoclar	with metal stylus with a 5-
31	mechanical	Vivadent,	mm diameter spherical tip
3 [loading on	Nova York,	in a small basin connected
202	the fracture	EUA)	by a temperature-
l., 2	resistance of		controlled reservoir of
t a	3D-printed		distilled water 37 ± 2 °C,
e e	zirconia		at 2 Hz, for 1.2 million
sfai	crowns in		cycles and applied load
Re	comparison		between 20 and 200 N.
	to milled		
	zirconia		
	crowns.		

Rosentritt <i>et al.</i> , 2020 [32]	Comparison of in-vitro fatigue and wear performance of 3Y-, 4Y-, 5Y-TZP and lithium disilicate ceramic, multilayer/m onolayer 4Y-TZP and variation of wall thickness at	3Y-TZP-LA (DD Bio ZX ²) 4Y-TZP - multilayer and monolayer (DD cube ONE) 5Y-TZP (DD cubeX ²) - Dental Direkt GmbH Spenge, Germany.	The fatigue was conducted with a steatite sphere ($\emptyset =$ 12 mm), with a load of 50 N for 1,200,000 cycles and 3,000 thermal cycles (5-55 °C).
Skjold <i>et al.</i> ,2020 [33]	To compare the fracture load after artificial short-term aging of monolithic, full-contour zirconia crowns with different amounts of yttria stabilization.	Super high translucent zirconia (5Y-Z - DD cube X ²) High translucent zirconia (3Y-Z - DD Bio ZX ²) Dental Direkt, Spenge, Germany	The fatigue was conducted using a spherical stainless steel tip ($\emptyset = 3 \text{ mm}$), in water at 37 °C, at 1 Hz, with load of 60-200 N, for 30,000 cycles

	To evaluate	TZ (IPS e.max	Step-stress fatigue method,
	the fatigue	ZirCAD MT	in distilled water, with
	behavior	Multi, Ivoclar	hemispherical stainless
	(load for	Vivadent)	steel piston ($\emptyset = 40 \text{ mm}$),
	failure.	,	at 20 Hz, with initial load
	cycles for		of 200 N for 5,000 cycles,
	failure, and		followed by steps of
	survival		10,000 cycles starting at
	rates) and		400 N up to 2,800 N or
	FEA		until failure, step size of
52]	analysis of		200 N.
1 [5	different		
02	ceramic		
, 5	materials		
al	luted over		
s et	different		
ares	foundation		
Soc	substrates		
	for implant-		
	supported		
	crowns.		
	To evaluate	Zirconia	Step-stress fatigue method,
	the fatigue	crowns	with a stainless steel
34]	resistance of	(Zenostar Zr	sphere ($\emptyset = 40 \text{ mm}$), in
3 [3	monolithic	Translucent,	water, at 20 Hz starting
03	zirconia and	Ivoclar AG)	from 200 N for 5,000
;	multilayer		cycles to adjust the testing
t al	ceramic		assembly, followed by
ı eı	structures		sequential increments with
um	using the		a step size of 200 N each
Toi	CAD-on		10,000 cycles until failure
	technique in		to a maximum load of
	different		2,800 N.
	thicknesses.		

Zacher et al., 2020 [39]	To investigate the in vitro performance and fracture force of anterior implant- supported tooth- colored fixed dental prosthesis.	5Y-FSZ Pritidenta; 4Y-TZP Pritidenta	The fatigue was conducted with steatite balls ($\emptyset = 6$ mm), at a frequency of 1.6 Hz (simulated mouth opening: 2 mm), with a load of 50 N for 1.2×10^6 cycles. During mechanical loading specimens were thermally aged (5-55 °C, 2- min cycle) for $2 \times 3,000$ cycles in distilled water.
Zimmermann <i>et al.</i> , 2020 [35]	To analyze the effect of CAD/CAM fabrication and sintering procedures on the fracture load of monolithic zirconia crowns with different material thicknesses	InCoris TZI C (Dentsply Sirona, York, USA)	Thermomechanical loading was conducted with 1.2 million cycles, 1.7 Hz, invariable occlusal load 49 ± 0.7 N, thermal cycling 5- 55 °C, dwell time 120 seconds, 12,000 cycles, water change time 10 s, human natural molar cusp antagonist.

	To evaluate	IPS e.max	Typical staircase fatigue
Zucuni et al., 2017 [53]	the effects of	ZirCAD for	method, in water, with a
	different	inLab MO	flat circular tungsten piston
	pre-sintering		$(\emptyset = 1.6 \text{ mm})$, at 6 Hz,
	fabrication		with 20,000 cycles,
	processing		sinusoidal loading with
	techniques		amplitude ranging from a
	of Y-TZP		minimum of 10 MPa to the
	ceramic		maximum force.
	(CAD/CAM		
	vs. in-lab),		
	considering		
	surface		
	characteristi		
	cs and		
	mechanical		
	performance		
	outcomes.		

4. Discussion

Fatigue is often defined as degradation (wear, weakening) of a structural component subjected to mechanical factors, chemical or biological stress and, in most cases, a combination thereof. Therefore, fatigue in a structure increases over time, given that defects tend to grow with use or service and the relationship between defect size and structural longevity (reliability) becomes exponential. Thus, properties of the materials always degrade over time, and the fatigue parameter reflects how the material performs over time, thereby determining the longevity of a structure [1, 2, 59]. In dental ceramics, with the numerous challenges posed by the oral environment and susceptibility of the material to subcritical crack growth (SCG), ceramic structures are more prone to fatigue failures [59].

In our review, we found studies that perform what is known as sample aging prior to testing specimens with static loading. For instance, a load (e.g., 50 N) is applied by 1 million cycles either with or without thermal cycling before subjecting the specimen to monotonic loading until failure occurs. In such cases, some damage is assumed to accumulate, but it does not always mimic clinical damage.

This assumption of damage accumulation is often discussed in studies that use chewing simulation. Chewing simulators are typically employed to clinically mimic the masticatory process and cause relevant long-term cyclic fatigue outcomes using nonclinical specimens. However, the experimental setups in such approach have to be carefully adjusted to at least create relevant damage accumulation [60, 61]; otherwise, investigators will be wasting their time and leading readers into misinterpretations [2]. The present systematic review excluded studies that employed chewing simulators for sample aging instead of using wellestablished fatigue methods.

Cyclic fatigue testing has been utilized to assess fatigue resistance and time to failure of ceramic materials and structures, thus seeking to predict their clinical behavior [2]. These tests can be performed using conventional or accelerated methods.

51

Conventional fatigue tests are time-consuming and require a sizable amount of specimens [7]. As a result, accelerated fatigue tests have been used much more frequently, including the boundary [62], staircase [63], step-stress [64], and stepwise [36, 58] methods.

In the present review, the step-stress method was the most widely employed accelerated fatigue test to assess translucent zirconia [15, 19, 20, 22–24, 28, 34, 38, 40-42, 45, 46, 48, 51, 52, 54] ,followed by the staircase method [43, 44, 47, 49, 53, 56, 57] and by the stepwise method [36, 58]. Use of the boundary method for cyclic fatigue testing on translucent zirconia was not found in any of the reviewed articles.

Different types of specimens were used in the fatigue studies included in the present review, such as single-unit crowns [19–35], endocrowns [36, 37], fixed bridges [38, 39], discs [40 – 53], bars [15, 54–57], and square plates [58].

In laboratory mechanical tests, some variables are clinically important. For instance, failure and loads leading to failure are sensitive to water, to the type of luting material, and to bonding to infrastructure materials [65]. In this respect, there seems to be a consensus that cementation of the specimens interferes with the mechanical behavior of ceramics [66, 67]. In this review, most studies conducted the fatigue test on specimens cemented onto some structure [19–37, 39, 45, 48, 50–52]. Standardization of dentin substrates for the cementation of ceramic specimens for

mechanical tests is probably the major challenge in this type of experiment. Our systematic review found only three studies that used human tooth dentin as substrate, and two of them utilized endocrowns as restorations [36, 37], whereas one employed crowns on molars [30]. The difficulty in standardizing dentin substrates has led to the search for dentin-like materials. Fiberglass-reinforced epoxy (G10) is the most widely used in laboratory studies [20, 21, 24, 26, 28, 31, 34, 45, 48, 51] to assess fatigue on cemented translucent zirconia. The bond strength of resin cement to wet and dry G10 was compared with the bond strength to dentin, indicating adequate compatibility between G10 and dentin, both in terms of adhesion and elastic behavior. Therefore, G10 has been recommended as dentin substitute in mechanical strength tests [65]. Other studies used infrastructures made from other resin composites [23, 25, 27, 29, 32, 33, 48, 50], methacrylates [35]. epoxy resin with aluminum and polyoxymethylene copolymer [29], polyetheretherketone and yttria-stabilized zirconia [52], zirconia [51]; metal die [19], titanium [51], Ni-Cr metal alloy [48], and cementation on implantabutment analog [22, 30, 39]. Considering the type of substrate, one should note that the higher the stiffness, the higher the load needed for fracture of the ceramic specimen [35]. A stiffer substrate enhances the load-bearing capacity under fatigue of the restoration assembly because it reduces stress concentration on the inner surface of ceramic restorations, thereby reducing the risk of restoration failure. On the other hand, a less rigid base concentrates more stress on the inner surface of ceramic restorations, increasing the likelihood of restoration failure due to radial cracks on this surface [52].

Another important variable that should be considered in fatigue testing is the loading piston. Pistons made from various materials and with different tip shapes have been employed to mimic clinical behavior. The diameter and shape (spherical or flat) of the active tip of the loading piston can induce different mechanical responses in the tested materials [68]. In the clinical setting, the human tooth should be the piston of choice in experiments evaluating the mechanical behavior of dental materials. However, teeth are difficult to obtain and standardize and they are prone to fracture during the test. Therefore, pistons made from different materials (e.g., stainless steel and tungsten), ceramics (e.g., zirconia-based, lithium disilicate-based, and steatite), and composites (e.g., G10) have been investigated. One study assessed different types of load application and recommended the use of a lithium disilicate-based ceramic piston for mechanical testing of ceramics [69].

The present review demonstrated that stainless steel, followed by tungsten and steatite, was the most widely used material in loading pistons. The active tip of stainless steel pistons

54

most typically used is the one with a spherical shape and different diameters: 40 mm [20, 45, 48, 52], 8 mm [25, 27], 6 mm [22, 24, 36, 38, 51], 5 mm [26, 31] and 3 mm [33]. It was also employed in a cylindrical shape with a flat tip of 1.6 mm in diameter [47, 58], 1.4 mm in diameter [44], and in two inverted V-shaped planes [29]. As for tungsten pistons, the flat shape with 1.6 mm in diameter [40–42, 46, 53], the spherical one with 6 mm in diameter [37] and with 13 mm in diameter [28], and the cylindrical one with 1.6 mm in diameter [50] were most frequently used. Regarding steatite pistons, the spherical shape with 6 mm in diameter [39] or 12 mm in diameter [30] was the most widely used one. One study reported on the use of a natural human molar cusp antagonist, with load application to the central fissure [35].

Some information about the pistons, such as shape, material, and diameter, was missing in a few studies [21, 23, 32, 43, 55, 56], whereas no information about the pistons used in fatigue testing was provided by other studies [15, 19, 49, 54, 57].

The types of equipment for fatigue testing of translucent zirconia varied considerably across studies, and ElecrtoPlus E300 (Instron Corporation) was one of the most frequently used [20, 22, 24, 36–38, 40–44, 47, 48, 51–53, 57, 58]. Mechanical tests performed in water show lower strength of ceramic materials when compared to tests conducted under dry conditions, and this is due to the corrosion of ceramic by water molecules, leading to crack

growth. This aspect is directly associated with clinical failures of ceramic restorations [1]. Most fatigue tests were performed in a wet environment, such as water [19–25, 27, 29, 30, 32–35, 38, 39, 41, 42, 44, 46–49, 51, 53], distilled water [26, 31, 36, 37, 40, 45, 50, 52, 55, 58] and artificial saliva [28]. Two studies conducted the tests under dry conditions [54, 56], and some studies did not provide any information about that [15, 43, 57].

Note that, even though the results of the fatigue tests do not fully reproduce the oral environment, they can show a trend in the clinical performance of structures in service. Clinical trials that could predict the performance of translucent zirconias and of the type of clinical failure in a more realistic fashion are still needed. Likewise, few clinical trials have reported on the performance and type of failure of any zirconia-based restoration (crowns and bridges) in any type of zirconia.

One study [70] evaluated the clinical performance of monolithic crowns made from translucent zirconia with occlusal reduction between 1.5 and 2.0 mm and found a survival rate of 93.3% at 3 years, with no crown fractures during the study. Another study [71] collected data over a 7.5-year period on 136,944 zirconia-based restorations, of which 93,848 were monolithic, with a fracture rate of 0.54% (n=77,411) for crowns and 1.95% (n=16.437) for bridges. A literature review [72] of nine articles assessed the clinical behavior of single-unit crowns made from

monolithic zirconia. Only two articles reported failures associated with cracks or fractures in the restorations [17, 73], but the longest follow-up period had an average duration of 2.1 years, and only one restoration was reported as having been fractured, with no fractrographic analysis performed [73]. A study [17] involving 84 crowns, only one fracture occurred at the cervical margin of the crown after 16 months. Another study [18] also reported fractures in zirconia-based crowns in the cervical margin. These studies [17, 18] were the only ones to report on the use of fracture analysis. In the present review, only three in vitro studies reported fractures that were similar to clinical fractures [28, 29, 33]. However, the parameters and methodological variables of these studies are dissimilar, not allowing for any correlation between them. This could then suggest some tendency towards a certain type of fracture, regardless of the fatigue test used. Lack of information about fracture analysis in *in vivo* and *in vitro* studies significantly hinders any evaluation and comparison between the fatigue methods.

Studies that used the step-stress method for assessing crowns reported fractures initiating in the occlusal contact region [19, 28] and on the cementation surface [19, 20, 23, 34]. The study that employed the stepwise method [36] reported fracture originating on the occlusal surface, below the contact with the piston. Some studies utilized fatigue methods as a means of aging. Consequently, most of them did not report any type of failure during the fatigue tests [21, 25–27, 30–32, 35, 37, 39]. Standardization of *in vitro* studies poses a challenge and calls into question the clinical validity of the data obtained [69]. Limitations of *in vitro* fatigue tests include the lack of certain serviceable conditions and of the oral environment, such as temperature variations and changes in pH, sliding movements, wear patterns, and other biological factors. Nevertheless, *in vitro* studies serve as a valuable alternative for pointing out trends in the behavior and clinical performance of recently developed dental materials [43].

5. Conclusions

Fatigue testing methods for the assessment of translucent zirconia structures vary considerably. Most studies assessed structural fatigue of materials using the step-stress method, but they showed a broad array of parameters utilized in fatigue testing, mainly regarding the load value, duration, and application mode. Notwithstanding the reported clinical failures in translucent zirconia structures, only three *in vitro* studies mentioned similar failures, and the hypothesis of the present study was then rejected. Owing to the small number of clinical trials, probably because of the recent introduction of these materials, correlating the failures observed in *in vitro* studies with clinical failures is not an easy task;

therefore, further studies reporting clinical failures with translucent zirconias are needed.

References

[1] Della Bona, A. Bonding to ceramics: scientific evidences for clinical dentistry. 1^a edição. São Paulo: Artes Medicas, 2009.

[2] Kelly JR, Cesar PF, Scherrer SS, Della Bona A, van Noort R, Tholey M, Vichi A, Lohbauer U. ADM guidance-ceramics: Fatigue principles and testing. Dent Mater. 2017;33(11):1192-1204.

[3] Joshi GV, Duan Y, Della Bona A, Hill TJ, St John K, Griggs JA. Contributions of stress corrosion and cyclic fatigue to subcritical crack growth in a dental glass-ceramic. Dent Mater. 2014;30(8):884-90.

[4] Joshi GV, Duan Y, Della Bona A, Hill TJ, St John K, Griggs JA. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions. Dent Mater. 2013;29(11):1123-31.

[5] Alessandretti R, Borba M, Della Bona A. Cyclic contact fatigue resistance of ceramics for monolithic and multilayer dental restorations. Dent Mater. 2020;36(4):535-541.

[6] Lodi E, Weber KR, Benetti P, Corazza PH, Della Bona A, Borba M. How oral environment simulation affects ceramic failure behavior. J Prosthet Dent. 2018;119(5):812-818.

[7] Ottoni R, Griggs JA, Corazza PH, Della Bona A, Borba M. Precision of different fatigue methods for predicting

glass-ceramic failure. J Mech Behav Biomed Mater. 2018;88:497-503.

[8] Basso GR, Moraes RR, Borba M, Duan Y, Griggs JA, Della Bona A. Reliability and failure behavior of CAD-on fixed partial dentures. Dent Mater. 2016;32(5):624-30.

[9] Borba M, Cesar PF, Griggs JA, Della Bona A. Step-stress analysis for predicting dental ceramic reliability. Dent Mater. 2013 Aug;29(8):913-8.

[10] Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent. 2018;26(2):62-74.

[11] Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):327-337.

[12] Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147.

[13] Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137.

[14] Flask JD, Thompson GA, Singh M, Berzins DW. Edge chipping of translucent zirconia. J Prosthet Dent. 2022;127(5):793-800.

[15] Jerman E, Lümkemann N, Eichberger M, Hampe R, Stawarczyk B. Impact of varying step-stress protocols on the fatigue behavior of 3Y-TZP, 4Y-TZP and 5Y-TZP ceramic. Dent Mater. 2021;37(7):1073-1082.

[16] Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

[17] Hansen TL, Schriwer C, Øilo M, Gjengedal H. Monolithic zirconia crowns in the aesthetic zone in heavy grinders with severe tooth wear - An observational case-series. J Dent. 2018;72:14-20.

[18] Skjold A, Schriwer C, Gjerdet NR, Øilo M. Fractographic analysis of 35 clinically fractured bi-layered and monolithic zirconia crowns. J Dent. 2022;125:104271.

[19] Adabo GL, Longhini D, Baldochi MR, Bergamo ETP, Bonfante EA. Reliability and lifetime of lithium disilicate, 3Y-TZP, and 5Y-TZP zirconia crowns with different occlusal thicknesses. Clin Oral Investig. 2023;27(7):3827-3838.

[20] Alves DM, Cadore-Rodrigues AC, Prochnow C, Burgo TAL, Spazzin AO, Bacchi A, Valandro LF, Rocha Pereira GK. Fatigue performance of adhesively luted glass or polycrystalline CAD-CAM monolithic crowns. J Prosthet Dent. 2021;126(1):119-127.

[21] Antunes MCF, Miranda JS, Carvalho RLA, Carvalho RF, Kimpara ET, Assunção E Souza RO, Leite FPP. Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns? Braz Oral Res. 2018;32:e34.

[22] Barbosa-Júnior SA, Pereira GKR, Dapieve KS, Machado PS, Valandro LF, Schuh C, Consani RLX, Bacchi A. Mechanical Fatigue Analysis of PEEK as Alternative to Zirconia for Definitive Hybrid Abutments Supporting All-Ceramic Crowns. Int J Oral Maxillofac Implants. 2020;35(6):1209-1217.

[23] Benalcazar Jalkh EB, Ramalho IS, Bergamo ETP, Alves LMM, Tanaka R, Witek L, Coelho PG, Hirata R, Bonfante EA.

Ultrathin lithium disilicate and translucent zirconia crowns for posterior teeth: Survival and failure modes. J Esthet Restor Dent. 2024;36(2):381-390.

[24] Dal Piva AMO, Tribst JPM, Benalcázar Jalkh EB, Anami LC, Bonfante EA, Bottino MA. Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency. Dent Mater. 2021;37(3):e140-e150.

[25] Jurado CA, Sayed Ahmed A, Lawson NC, Azpiazu-Flores FX, Green C, Cho SH. Fracture resistance of zirconia surveyed crowns with four different occlusal rest seat designs. J Prosthodont. 2023;20:1-6.

[26] Kashkari A, Yilmaz B, Brantley WA, Schricker SR, Johnston WM. Fracture analysis of monolithic CAD-CAM crowns. J Esthet Restor Dent. 2019;31(4):346-352.

[27] Lawson NC, Jurado CA, Huang CT, Morris GP, Burgess JO, Liu PR, Kinderknecht KE, Lin CP, Givan DA. Effect of Surface Treatment and Cement on Fracture Load of Traditional Zirconia (3Y), Translucent Zirconia (5Y), and Lithium Disilicate Crowns. J Prosthodont. 2019;28(6):659-665.

[28] Li Q, Yang Y, Chen K, Jiang Y, Swain MV, Yao M, He Y, Liang Y, Jian Y, Zhao K. Effect of low-temperature degradation on the fatigue performance of dental strength-gradient multilayered zirconia restorations. J Dent. 2024;142:104866.

[29] Nakamura K, Ankyu S, Nilsson F, Kanno T, Niwano Y, Vult von Steyern P, Örtengren U. Critical considerations on load-tofailure test for monolithic zirconia molar crowns. J Mech Behav Biomed Mater. 2018;87:180-189. [30] Preis V, Hahnel S, Behr M, Bein L, Rosentritt M. In-vitro fatigue and fracture testing of CAD/CAM-materials in implantsupported molar crowns. Dent Mater. 2017;33(4):427-433.

[31] Refaie A, Bourauel C, Fouda AM, Keilig L, Singer L. The effect of cyclic loading on the fracture resistance of 3D-printed and CAD/CAM milled zirconia crowns-an in vitro study. Clin Oral Investig. 2023;27(10):6125-6133.

[32] Rosentritt M, Preis V, Behr M, Strasser T. Fatigue and wear behaviour of zirconia materials. J Mech Behav Biomed Mater. 2020;110:103970.

[33] Skjold A, Schriwer C, Gjerdet NR, Øilo M. Effect of artificial aging on high translucent dental zirconia: simulation of early failure. Eur J Oral Sci. 2020;128(6):526-534.

[34] Tomm AGF, Machado PS, Rosa LSD, Pereira GKR, Spazzin AO, Alessandretti R. Fatigue resistance of monolithic and multilayer zirconia crowns using veneer layering or CAD-on technique. Braz Dent J. 2023;34(6):150-159.

[35] Zimmermann M, Ender A, Mehl A. Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness. Oper Dent. 2020;45(2):219-226.

[36] Demachkia AM, Velho HC, Valandro LF, Dimashkieh MR, Samran A, Tribst JPM, de Melo RM. Endocrown restorations in premolars: influence of remaining axial walls of tooth structure and restorative materials on fatigue resistance. Clin Oral Investig. 2023;27(6):2957-2968.

[37] Hassouneh L, Jum'ah AA, Ferrari M, Wood DJ. Post-fatigue fracture resistance of premolar teeth restored with endocrowns: An in vitro investigation. J Dent. 2020;100:103426.

[38] Marini G, Saldanha da Rosa L, Machado PS, Silvestre FA, Valandro LF, Feitosa VP, Pereira GKR, Bacchi A. Fatigue performance analysis of strength-graded zirconia polycrystals for monolithic three-unit implant-supported prostheses. J Mech Behav Biomed Mater. 2023;140:105736.

[39] Zacher J, Bauer R, Strasser T, Rosentritt M. Laboratory performance and fracture resistance of CAD/CAM implant-supported tooth-coloured anterior FDPs. J Dent. 2020;96:103326.

[40] Arcila LVC, Ramos NC, Campos TMB, Dapieve KS, Valandro LF, de Melo RM, Bottino MA. Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses. J Adv Prosthodont. 2021;13(6):385-395.

[41] Auzani ML, Dapieve KS, Zucuni CP, Rocha Pereira GK, Valandro LF. Influence of shading technique on mechanical fatigue performance and optical properties of a 4Y-TZP ceramic for monolithic restorations. J Mech Behav Biomed Mater. 2020;102:103457.

[42] Cadore-Rodrigues AC, Machado PS, Oliveira JS, Jahn SL, Dorneles LS, Rippe MP, Pereira GKR, Valandro LF. Surface treatments and its effects on the fatigue behavior of a 5% mol yttria partially stabilized zirconia material. J Mech Behav Biomed Mater. 2021;120:104543.

[43] De Carvalho ABG, Gonçalves NI, Campos TMB, Zucuni C, Valandro LF, de Siqueira Ferreira Anzaloni Saavedra G, Bottino MA, de Assunção E Souza RO, de Melo RM. Fatigue strength of 5Y-FSZ: glazing and polishing effects. Clin Oral Investig. 2022;26(6):4479-4486.

[44] Fraga S, Pereira GKR, Freitas M, Kleverlaan CJ, Valandro LF, May LG. Loading frequencies up to 20Hz as an alternative to

accelerate fatigue strength tests in a Y-TZP ceramic. J Mech Behav Biomed Mater. 2016;61:79-86.

[45] Freitas JS, Souza LFB, Dellazzana FZ, Silva TMRD, Ribeiro L, Pereira GKR, May LG. Advanced lithium disilicate: A comparative evaluation of translucency and fatigue failure load to other ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2023a;148:106192.

[46] Freitas JS, Souza LFB, Pereira GKR, May LG. Surface properties and flexural fatigue strength of an advanced lithium disilicate. J Mech Behav Biomed Mater. 2023b;147:106154.

[47] Marchionatti AME, Wandscher VF, Aurélio IL, Bergoli CD, May LG. File-splitting multilayer vs monolithic Y-TZP: Fatigue flexural strength and loading stresses by finite element analysis. Dent Mater. 2019;35(4):e63-e73.

[48] Machry RV, Cadore-Rodrigues AC, Borges ALS, Pereira GKR, Kleverlaan CJ, Venturini AB, Valandro LF. Fatigue resistance of simplified CAD-CAM restorations: Foundation material and ceramic thickness effects on the fatigue behavior of partially- and fully-stabilized zirconia. Dent Mater. 2021;37(4):568-577.

[49] Nishioka G, Prochnow C, Firmino A, Amaral M, Bottino MA, Valandro LF, Melo RM. Fatigue strength of several dental ceramics indicated for CAD-CAM monolithic restorations. Braz Oral Res. 2018;32:e53.

[50] Packaeser MG, Aragonez GC, Soares PM, Borges ALS, Pereira GKR, Valandro LF, Rippe MP. High-versus low-viscosity resin cements: Its effect on the load-bearing capacity under fatigue of a translucent zirconia. J Mech Behav Biomed Mater. 2023;142:105829.

[51] Pereira GKR, Graunke P, Maroli A, Zucuni CP, Prochnow C, Valandro LF, Caldas RA, Bacchi A. Lithium disilicate glassceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution. J Mech Behav Biomed Mater. 2019;91:122-130.

[52] Soares PM, Cadore-Rodrigues AC, Souto Borges AL, Valandro LF, Pereira GKR, Rippe MP. Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. J Mech Behav Biomed Mater. 2021;123:104760.

[53] Zucuni CP, Guilardi LF, Fraga S, May LG, Pereira GKR, Valandro LF. CAD/CAM machining vs pre-sintering in-lab fabrication techniques of Y-TZP ceramic specimens: Effects on their mechanical fatigue behavior. J Mech Behav Biomed Mater. 2017;71:201-208.

[54] Antón X, Liebermann A, Hampe R, Joda T, Stawarczyk B. Impact of high-speed sintering and choice of preshaded monochrome or multilayered blanks on fatigue behavior of 4 mol% yttria-stabilized tetragonal zirconia polycrystal. J Prosthet Dent. 2023;130(4):639-645.

[55] Elraggal A, R Afifi R, Alamoush RA, Raheem IA, Watts DC. Effect of acidic media on flexural strength and fatigue of CAD-CAM dental materials. Dent Mater. 2023;39(1):57-69.

[56] Holman CD, Lien W, Gallardo FF, Vandewalle KS. Assessing Flexural Strength Degradation of New Cubic Containing Zirconia Materials. J Contemp Dent Pract. 2020;21(2):114-118. [57] Li W, Ding Q, Sun F, Liu B, Yuan F, Zhang L, Bao R, Gu J, Lin Y. Fatigue behavior of zirconia with microgrooved surfaces produced using femtosecond laser. Lasers Med Sci. 2023;38(1):33.

[58] Guilardi LF, Soares P, Werner A, Jager N, Pereira GKR, Kleverlaan CJ, Rippe MP, Valandro LF. Fatigue performance of distinct CAD/CAM dental ceramics. J Mech Behav Biomed Mater. 2020; 103:103540.

[59] Zhang Y, Sailer I, Lawn BR. Fatigue of dental ceramics. J Dent. 2013;41(12):1135-47.

[60] Heintze SD. How to qualify and validate wear simulation devices and methods. Dent Mater. 2006;22(8):712-34.

[61] Heintze SD, Eser A, Monreal D, Rousson V. Using a chewing simulator for fatigue testing of metal ceramic crowns. J Mech Behav Biomed Mater. 2017;65:770-780.

[62] Zhang Y and Griggs JA. Evaluation of failure probability estimators for cyclic fatigue using boundary technique. Journal of Materials Science Letters 2003;22(24):1775-1777

[63] Collins, J.A., 1993. Staircase or up-and-down methods. Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, 2 ed. John Wiley & Sons, New York, pp. 383–390.

[64] Nelson W. Accelerated life testing - Step-stress models and data analyses. IEEE Trans Reliab 1980;R-29(2):103-8.

[65] Kelly JR, Rungruanganunt P, Hunter B, Vailati F. Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent. 2010;104(4):228-38.

[66] De Kok P, Pereira GKR, Fraga S, de Jager N, Venturini AB, Kleverlaan CJ. The effect of internal roughness and bonding on the

fracture resistance and structural reliability of lithium disilicate ceramic. Dent Mater. 2017;33(12):1416-1425.

[67] Spazzin AO, Guarda GB, Oliveira-Ogliari A, Leal FB, Correr-Sobrinho L, Moraes RR. Strengthening of Porcelain Provided by Resin Cements and Flowable Composites. Oper Dent. 2016;41(2):179-88.

[68] Yi YJ, Kelly JR. Effect of occlusal contact size on interfacial stresses and failure of a bonded ceramic: FEA and monotonic loading analyses. Dent Mater. 2008;24(3):403-9.

[69] Weber KR, Benetti P, Della Bona A, Corazza PH, Medeiros JA, Lodi E, Borba M. How does the piston material affect the in vitro mechanical behavior of dental ceramics? J Prosthet Dent. 2018 Nov;120(5):747-754.

[70] Gardell E, Larsson C, von Steyern PV. Translucent Zirconium Dioxide and Lithium Disilicate: A 3-Year Follow-up of a Prospective, Practice-Based Randomized Controlled Trial on Posterior Monolithic Crowns. Int J Prosthodont. 2021;34(2):163-172.

[71] Sulaiman TA, Abdulmajeed AA, Delgado A, Donovan TE. Fracture rate of 188695 lithium disilicate and zirconia ceramic restorations after up to 7.5 years of clinical service: A dental laboratory survey. J Prosthet Dent. 2020;123(6):807-810.

[72] Leitão CIMB, Fernandes GVO, Azevedo LPP, Araújo FM, Donato H, Correia ARM. Clinical performance of monolithic CAD/CAM tooth-supported zirconia restorations: systematic review and meta-analysis. J Prosthodont Res. 2022;66(3):374-384.

[73] Gunge H, Ogino Y, Kihara M, Tsukiyama Y, Koyano K. Retrospective clinical evaluation of posterior monolithic zirconia

restorations after 1 to 3.5 years of clinical service. J Oral Sci. 2018;60:154-8.

Journal of Dentistry

Fatigue methods for evaluating translucent dental zirconia --Manuscript Draft--

Manuscript Number:	
Article Type:	Review Article
Keywords:	Translucent zirconia; Dentistry; Dental Materials; Fatigue
Corresponding Author:	Alvaro Della Bona, PhD University of Passo Fundo Faculty of Dentistry Passo Fundo, BRAZIL
First Author:	Viviane Cantelli, DDS
Order of Authors:	Viviane Cantelli, DDS
	Marcelo Tapparo Meirelles, DDS
	Alvaro Della Bona, PhD
Abstract:	Objective
	To investigate fatigue methods for the evaluation of translucent zirconia and to associate in vitro failures with clinically reported ones.
	Data
	Studies published in English that used fatigue tests on dental translucent zirconia.
	Source
	Two databases (MEULINE/PubMed and Scopus) were electronically searched without any restriction on year of publication.
	Study selection
	A total of 4555 studies were identified. After removal of duplicates (78) and irrelevant articles (4316) that did not meet the inclusion criteria, 161 articles were considered eligible based on their titles and abstracts. These articles were fully read, leading to the inclusion of 41 studies in the review.
	Results
	The most widely used fatigue method for evaluation of translucent zirconia was step- stress (18 articles), followed by staircase (seven articles), and step-wise (two articles). Most studies had been conducted in a wet environment with the use of a stainless steel piston to apply load to cemented structures on a dentin-like substrate. Most fracture analyses indicated the fracture originated on the cementation or contact surface where the load was applied. Moreover, studies that utilized anatomical structures (dental crowns) reported fractures starting at the cervical margin of the crowns.
	Conclusion
	Most studies used the step-stress method. Only three studies reported failures similar to those found in clinical trials that used translucent zirconia restorations.
	Clinical Significance
	The study findings can assist on correlating clinical failures to the ones observed in vitro.
Suggested Reviewers:	Fabricio Collares, PhD Professor, Federal University of Rio Grande do Sul
	fabricio.collares@ufrgs.br biomaterials expert
	Vicente Leitune, PhD Professor, Federal University of Ric Grande do Sul vicente leitune@ufgs.br biomaterials expert

ARTIGO II RESISTÊNCIA À FADIGA DE ZIRCÔNIAS CIMENTADAS APÓS DIFERENTES TRATAMENTOS DE SUPERFÍCIE⁴

Resumo

Objetivo. Avaliar a taxa de sobrevivência à fadiga de cerâmicas a base de zircônia (3Y-TZP e 5Y-PSZ) unidas ao cimento resinoso após diferentes tratamentos de superfície (usinagem por CAD CAM, silicatização e jateamento com partículas de óxido de alumínio).

Métodos. Corpos de prova em formado de disco foram obtidos a partir de blocos de zircônia monolítica 3Y-TZP (Vita YZ HT) e a 5Y-PSZ (Vita YZ XT). Os discos foram divididos aleatoriamente em seis grupos, de acordo com o material e tratamento de superfície: controle (3Y-None e 5Y-None), silicatização (3Y-Cojet e 5Y-Cojet) e jateamento com partículas de óxido de alumínio (3Y-

⁴ Viviane Cantelli, Ulysses Lenz, Jason Alan Griggs, Alvaro Della Bona

^{*} Artigo a ser submetido para revista Dental Materials.

Al₂O₃ e 5Y-Al₂O₃). Todos foram cimentados em um suporte de resina epóxi reforçada com fibra (G10). O ensaio de fadiga foi realizado utilizando uma carga de 120 N, com frequência de 3 Hz, sendo interrompido para avaliação após 10^4 , 10^5 , 5×10^5 , 10^6 e 1.5 x 10^6 ciclos e a presença ou ausência de falha foi registrada. Amostras representativas foram avaliadas em microscopia (MEV) e para composição química (EDS). Os dados de fadiga foram analisados usando Kaplan – Meier (log rank) e Holm–Sidak. Os modos de falha foram reportados quantitativa e qualitativamente. A relação entre os modos de falha foi analisada pelo Chi-square test.

Resultados. Não houve diferença significativa para os modos de falha (p=0,30) entre todos os grupos. Os tratamentos de superfície mostraram curvas de sobrevivência significativamente diferentes (p < 0,001) para a cerâmica 5Y, mas não houve diferença para a cerâmica 3Y (p = 0,54). Considerando o tipo de tratamento de superfície, apenas o jateamento com Cojet mostrou uma diferença significativa (p < 0,001) entre as cerâmicas 3Y e 5Y.

Conclusão. Exceto quando tratada com silicatização, A resistência a fadiga foi semelhante entre as cerâmicas 3Y-TZP e 5Y-PSZ, exceto quando usado silicatização, que prejudicou o desempenho a fadiga da 5Y-PSZ.
Palavras-chave: Zircônia translúcida, Odontologia, Materiais dentários, Fadiga.

1. Introdução

As cerâmicas a base zircônia utilizadas na odontologia apresentam propriedades mecânicas diferenciadas das demais cerâmicas odontológicas, apresentando na sua composição o dióxido de zircônio (ZrO₂) e um estabilizador, usualmente o óxido de ítrio (Y₂O₃). São amplamente empregadas na odontologia devido à sua excelente biocompatibilidade e propriedades mecânicas [1,2], sendo classificadas em três gerações. A primeira geração, constituída de zircônia tetragonal estabilizada com 3 mol% de ítria, apresenta ótimas propriedades mecânicas, porém é relativamente opaca, levando à necessidade de cobertura estética em restaurações totais [3,4]. As zircônias de segunda geração mantêm a resistência [5], reduzindo o teor de alumina para aumentar a translucidez [6], porém, ainda não atingem a estética desejada para dentes anteriores [7]. A terceira geração, com maior teor de zircônia na fase cúbica [6], oferece maior translucidez ao aumentar o conteúdo de ítria para 4 a 5 mol% [8]. Esses avanços visam produzir restaurações monolíticas estéticas [9, 10], reduzindo o preparo dentário, desgaste do antagonista e tempo de fabricação, mantendo a biocompatibilidade e excelentes propriedades mecânicas [2].

A zircônia translúcida, embora proporcione resultados estéticos satisfatórios, apresenta uma redução na resistência ao lascamento à medida que sua translucidez aumenta devido ao aumento da fase cúbica em relação à fase tetragonal, o que pode comprometer suas propriedades mecânicas [11]. Quanto à adesão, é importante considerar o tratamento de superfície para promover a união com diferentes substratos. Opções como jateamento com partículas de óxido de alumínio e silicatização mostram-se viáveis. O jateamento com alumina promove alterações topográficas que aumentam a área de superfície e a retenção micromecânica, melhorando a adesão na interface da cerâmica com o sistema de cimentação [12-14]. A união promovida pela silicatização ocorre por interação química entre a superfície cerâmica, coberta por sílica, e o material resinoso por meio de um agente bifuncional silano, e também por promover um padrão topográfico favorável, que permite uma união micromecânica ao adesivo. Essas técnicas são essenciais para melhorar a resistência de união e garantir a durabilidade das restaurações cerâmicas [1].

Um dos grandes desafios na reabilitação oral é proporcionar resultados satisfatórios relacionados à função e a estética do paciente. Para alcançar isso, é importante ter conhecimento das propriedades de cada material disponível e poder determinar a melhor escolha para cada desafio clínico. Diversos testes laboratoriais estão disponíveis para avaliar o comportamento

74

mecânico de materiais, sendo os testes de fadiga essenciais para simular as condições do ambiente oral. Esses testes visam prever possíveis falhas por "fadiga" [15, 16], como fraturas, desgaste ou deformações [16], quando os materiais e estruturas são submetidos a cargas e estresse ao longo do tempo. A abordagem mais clinicamente relevante é o método cíclico, apesar de ser mais demorada, proporciona uma melhor compreensão da resposta do material às condições simuladas [17].

A utilização clínica de zircônia translúcida [18], pode apresentar um grande avanço na odontologia restauradora, pois oferece uma estética satisfatória e boas propriedades mecânicas. A compreensão de seu comportamento mecânico e conhecimento das propriedades é crucial para garantir sua durabilidade e eficácia clínica.

Com o atual conhecimento ainda permanecem questionamentos em relação aos efeitos e alterações superficiais e estruturais produzidos por tratamentos de superfície necessários à cimentação adesiva de restaurações à base de zircônia monolítica, para que se possa predizer o desempenho clínico. Assim, o objetivo do presente estudo é avaliar a taxa de sobrevivência à fadiga de cerâmicas a base de zircônia (3Y-TZP e 5Y-PSZ) unidas ao cimento resinoso após diferentes tratamentos de superfície (usinagem por CAD CAM, silicatização e jateamento com partículas de óxido de alumínio), testando as hipóteses de que (1) os tratamentos de superfície resultam em taxa de sobrevivência à fadiga semelhante para zircônias monolíticas (3Y-TZP e 5Y-PSZ) unidas ao cimento resinoso e que (2) a 3Y-TZP apresenta maior taxa de sobrevivência à fadiga do que a 5Y-PSZ quando aderidas a um cimento resinoso.

2. Materiais e Métodos

2.1 Preparação das amostras

Os corpos de prova foram obtidos a partir de blocos présinterizados de zircônia monolítica estabilizada por ítria (Y-TZP) sendo a 3Y-TZP (Vita YZ HT, Vita Zahnfabrik, Alemanha) e a 5Y-PSZ (Vita YZ XT, Vita Zahnfabrik, Alemanha). Os blocos foram fresados para formar cilindros, e depois foram fatiados para produzir os CPs em forma de disco com dimensões finais, após a sinterização, de $1,2 \pm 0,2$ mm de espessura e 14 ± 2 mm de diâmetro (ISO 6872:2015).

Os CPs foram cimentados em um substrato análogo à dentina (G10- resina epóxi reforçada com fibra - NEMA G10, International Paper, Hampton, SC, USA) de 25 mm de diâmetro com 5 mm de espessura. Partículas de óxido de alumínio (125 μ m; Mega ox, Germany) foram usadas para jatear (20 s) a superfície de união do G10, com uma pressão de 2 bar e distância de 10 mm. As superfícies jateadas foram limpas em banho sônico com água

destilada (5 min) seguido de jatos de água/ar e secas com ar antes do processo adesivo.

Além do grupo controle, onde a superfície cerâmica foi mantida conforme usinagem em CAM, o preparo da superfície de união das estruturas cerâmicas dos outros dois grupos experimentais foi realizado com jateamento de partículas (pressão= 2 bar, distância= 10 mm) com as seguintes características:

SI- Silicatização, jateamento com partículas de óxido de alumínio cobertas por sílica (CoJet Sand, 3M ESPE, Seefeld, Alemanha) de toda superfície adesiva e limpeza da superfície com jatos de ar; e

PA- Jateamento com partículas de óxido de alumínio (D50 = 125 μ m) de toda superfície adesiva e limpeza da superfície jateada em banho sônico com água destilada (5 min) seguido de jatos de água/ar e secas com ar antes do processo adesivo.

O sistema adesivo (Primers A e B, Ivoclar Vivadent, Schaan, Liechtenstein) foi aplicado na superfície jateada de G10 e a superfície de união das cerâmicas foi tratada com silano (Monobond S, Ivoclar Vivadent, Schann, Liechtenstein) por 3 min e seca com ar por 10 s. O cimento resinoso dual contendo monômero de fosfato (MDP) (Multilink N, Ivoclar Vivadent, Schaan, Liechtenstein) foi misturado e aplicado nas superfícies tratadas de G10 e cerâmica, que foram unidas e colocadas sob carga de 750 g por 1 min. O excesso de cimento foi removido e os corposde-prova foram fotoativados por 40 s.

2.2 Ensaio de fadiga

Uma carga de 120 N foi aplicada à superfície cerâmica com um pistão esférico de metal de aço inoxidável (diâmetro da ponta ativa: 6 mm) usando uma máquina de fadiga pneumática (BioPDI, Biocycle, São Carlos, Brasil) com frequência de 3 Hz em água destilada a 37°C. O teste foi interrompido após 10^4 , 10^5 , 5×10^5 , 10^6 e 1.5 x 10^6 ciclos e a presença ou ausência de falha foi observada utilizando transiluminação [19].

Falhas do tipo trinca (crack), lascamento e fratura catastrófica foram consideradas e reportadas em todas as etapas do teste de fadiga. As trincas foram reportadas como radiais, originadas da interface cerâmica-cimento (entalhe) ou cônicas (Hertzian cracks) originadas na área de contato com o pistão.

2.3 Análise topográfica e composicional

Amostras representativas de cada tratamento de superfície foram montadas em suportes de alumínio e cobertas em carbono para avaliação topográfica em microscópio eletrônico de varredura (MEV- Vega LM3, Tescan, Republica Tcheca) e analise composicional por espectroscopia de raios X por energia dispersiva (EDS) (Xmax, Oxford, Republica Tcheca). 2.4 Análise estatística

Os dados de fadiga foram analisados usando Kaplan – Meier (log rank) e teste de sobrevivência Holm–Sidak (α = 0.05). Os modos de falha foram reportados quantitativa e qualitativamente. A relação entre os modos de falha foi analisada pelo Chi-square test (α = 0.05).

3. Resultados

As figuras 1 - 5 apresentam a topografia dos tratamentos de superfície, além da análise composicional das superfícies cerâmicas tratadas (Figuras 2-5).

Figure II.1: Imagens representativas da superfície dos grupos controle (usinagem CAD CAM) das zircônias 3Y-TZP (A) e 5Y-PSZ (B). Magnificação x200.

Figure II.2: Imagem representativa de SEM (x1000) da superfície da cerâmica 3Y-TZP após silicatização. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada.

Figure II.3: Imagem representativas de SEM (x1000) da superfície da cerâmica 3Y TZP após jateamento com partículas de óxido de alumínio. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada.

Figure II.4: Imagem representativas de SEM (x1000) da superfície da cerâmica 5Y PSZ após silicatização. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada.

Figure II.5: Imagem representativas de SEM (x1000) da superfície da cerâmica 5Y PSZ após jateamento com partículas de óxido de alumínio. Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia avaliada.

O número e o tipo de falhas, e a taxa de sobrevivência em cada grupo experimental são apresentados na Tabela 1. A maioria dos CPs do grupo 5Y-Cojet (90%) não sobreviveu ao ensaio de fadiga (1,5 x 10^6 ciclos), enquanto que a maioria (60-75%) dos CPs dos demais grupos sobreviveu ao ensaio de fadiga.

O Chi-square test foi utilizado para determinar se a proporção de modos de falha era diferente para diferentes grupos. Não houve diferença significativa para os modos de falha (p=0,30) entre todos os grupos. Mais precisamente, não houve diferença quanto ao modo de falha entre as ceramicas 3Y e 5Y usando Cojet (p=0,39), particulas Al2O3 (p=0,15) ou sem tratamento (p=0,25). Além disso, os modos de falha não foram diferentes entre os tres grupos de 5Y (p=0,64) e entre os tres grupos de 3Y (p=0,25). A trinca foi o modo de falha mais predominante, com algumas falhas catastróficas e nenhum lascamento.

Grupos	Falhas				Taxa de
experimenta	trinc	lascament	catastrófic	tota	Sobrevivênci
is	а	0	а	1	а
5Y-Cojet	16	0	2	18	10%
5Y-Al ₂ O ₃	7	0	0	7	65%
3Y-Cojet	6	0	0	6	70%
3Y- Al ₂ O ₃	6	0	2	8	60%
5Y-None	7	0	1	8	60%
3Y-None	3	0	2	5	75%

Tabela II.1: Falhas e sobrevivência para cada grupo experimental.

As Figuras 6 e 7 apresentam as curvas de Kaplan-Meier para sobrevivência de OS grupos experimentais. Entre os grupos 5Y, os três tratamentos de curvas de superfície apresentam sobrevivência significativamente diferentes (p < 0,001). No entanto, entre os grupos 3Y, não há diferença significativa (p = 0.54). Considerando o tipo de tratamento de superfície, apenas o jateamento com Cojet mostrou uma diferença significativa (p < 0,001) entre as cerâmicas 3Y e 5Y, enquanto que o jateamento com Al2O3 (p=0,70) ou sem tratamento (p=0,38) nao mostraram diferenças entre as cerâmicas 3Y e 5Y.

Figura II.6: Curvas de sobrevivência versus número de ciclos para os grupos 5Y.

Survival Analysis

Figura II.7: Curvas de sobrevivência versus número de ciclos para os grupos 3Y.

Survival Analysis

4. Discussão

Existe uma ampla discussão sobre qual tipo de zircônia e tratamento de superfície proporcionam a melhor restauração, de acordo com o caso clinico, ao longo do tempo. Este estudo teve como objetivo avaliar o comportamento à fadiga de cerâmicas à base de zircônia 3Y-TZP (Vita YZ HT) e 5Y-PSZ (Vita YZ XT) aderidas ao cimento resinoso após diferentes tratamentos de superfície (jateamento com partículas de óxido de alumínio, silicatização e o controle da usinagem por CAM). As hipóteses testadas foram que (1) os tratamentos de superfície resultam em taxa de sobrevivência à fadiga semelhante para ambas as zircônias avaliadas (3Y-TZP e 5Y-PSZ), e que (2) a 3Y-TZP tem um desempenho superior à fadiga em comparação com a 5Y-PSZ. Os resultados mostraram que ambas as hipóteses foram parcialmente aceitas pois a 5Y-PSZ silicatizada apresentou uma taxa de sobrevivência significativamente inferior aos demais grupos experimentais. Contudo, os tratamentos de superfície utilizados não alteraram a taxa de sobrevivência da 3Y-TZP. Além disso, não foi possível determinar que o 3Y-TZP apresenta um desempenho superior em termos de resistência à fadiga em relação ao 5Y-PSZ, iá que ambos apresentaram resultados estatisticamente semelhantes, exceto quando submetidos ao tratamento de silicatização.

O maior teor de ítria melhora a translucidez e a aparência dos materiais de zircônia dentária, porém essas alterações na composição do material também afetam as propriedades mecânicas, com uma maior concentração de ítria sendo associada a diminuição na resistência e na tolerância a danos de cerâmicas a base de zircônia estabilizadas por ítria (Y-Z) [20-22]. Estudos reportaram redução de resistência a fratura em coroas 5Y-Z comparadas a coroas de 3Y-Z [20, 22]. Em outro estudo a 5Y-TZP mostrou valores de fratura mais baixos do que 4Y- e 3Y-TZP, mas com desempenhos comparáveis de ciclagem térmica e carregamento mecânico [21]. No entanto, no presente estudo, a 5Y-PSZ mostrou comportamento de fadiga inferior a 3Y-TZP apenas quando usado silicatização.

O preparo da superfície com jateamento é realizado com objetivo de melhorar a adesão e o desempenho das restaurações de zircônia cimentadas. No entanto, neste estudo, não foram observadas diferenças significativas entre os grupos controle (sem tratamento de superfície) e os grupos com tratamento de jateamento com partículas de Al2O3 para estruturas de zircônia 3Y-TZP e 5Y-PSZ. Resultados semelhantes foram observados em outro estudo, onde a abrasão por partículas de alumina não afetou significativamente a carga de fratura das coroas de zircônia (5Y-Z) [22], e outro estudo indicou que esse tratamento de superfície aumentou a resistência à flexão biaxial estática e à fadiga de estruturas de zircônia (4Y-PSZ) [23]. Outro estudo mostrou que os tratamentos de superfície (jateamento com partículas de óxido de alumínio e silicatização) melhoraram a resistência de união à zircônia convencional e de alta translucidez [24]. Não obstante, outro estudo mostrou que jateamento com partículas de alumina reduziu a resistencia a fadiga da zircônia (5Y-PSZ), enquanto que a silicatização não prejudicouo o comportamento à fadiga do 5Y-PSZ [25]. Outro estudo mostrou que a silicatização (CoJet e SilJet) da superfície da zircônia (IPS e.max ZirCAD) resultou na maior durabilidade de união de um cimento resinoso antes e após o envelhecimento mecânico, quando comparado com grupo controle e grupo jateado com partículas de alumina [26]. Outro estudo [27] mostrou que a silicatização da zircônia (IPS e.max ® ZirCAD) apresentou os menores valores de resistência de união quando comparado com os demais grupos (glaze spray, glaze pó/líquido e primer de zircônia). Esses estudos justificam as hipoteses apresentadas para o presente estudo.

Os resultados inferiores do grupo 5Y-Cojet observados no presente estudo, se devem, provavelmente, à questionável estabilidade da ligação do jateamento com sílica ao longo do tempo, o que foi observado pela maioria (14 das 18 falhas) dos CPs de 5Y-Cojet falharam na última fase de fadiga. Um estudo mostrou que a silicatização não resultou em uma camada de sílica uniforme e estável para YPSZ [28].

Tem sido reportado uma variação significativa nos protocolos de jateamento, incluindo diferenças no tamanho das partículas e nos parâmetros operacionais, como pressão, distância e tempo de aplicação. Essa diversidade dificulta a comparação e associação com outros estudos.

90

Sugere-se que os métodos de jateamento por partículas não são o suficiente para promover a melhor adesão do cimento resinoso à cerâmicas a base de zircônia [14, 29], a adesão química adicional utilizando primers contendo monômeros funcionais, como o 10-metacriloxidecil di-hidrogenofosfato (10-MDP) é desejável [1, 14, 30, 31]. Primers à base de silano também têm sido utilizados para melhorar a união entre adesivos e superfícies silicatizadas [1]. Esse raciocínio foi utilizado na seleção dos materiais no presente estudo.

Com o intúito de simular ambiente clinico, as estruturas ceramicas foram cimentadas adesivamente a estruturas análogas a dentina (G10- em resina epóxi reforçada com fibra de vidro) e submetidas ao ensaio de fadiga em água a 37°C [19]. Resutados de testes de adesão do cimento resinoso ao G10 em ambientes úmidos e secos, comparando com a adesão à dentina, mostraram uma boa compatibilidade, tanto em termos de adesão quanto de comportamento elástico [32].

As imagens em MEV representativas da superfície das cerâmicas após cada tratamento de superfície, mostrou que ambos os protocolos de jateamento promoveram uma alteração superficial mais proeminente em comparação com o grupo controle (usinado por CAM). Análise de EDS da superfície tratada confirmou a presença dos elementos químicos componentes da zircônia e do preparo da superfície. Na figura 5, o mapeamento químico por EDS

mostrou o elemento Hf (háfnio), isso pode ser explicado pela grande similaridade química com zircônio, o que se torna difícil a separação durante a analise [33].

Este estudo apresenta algumas limitações, como o uso de um pistão de aplicação de carga arredondado de aço inoxidável, ao invés de utilizar pistões de esmalte ou outros materiais restauradores antagonistas [34, 35]. A opção por um pistão metálico de ponta esférica foi devido à necessidade de suportar a elevada carga utilizada no ensaio, e pela similaridade de comportamento, comparado a outros pistões, em testes de fadiga [35]. A ausência de deslizamento durante a aplicação da carga, que ocorre clinicamente, também pode ser considerado uma limitação do estudo [36]. A aplicação de cargas multiaxiais pode influenciar a resposta dos materiais aos estímulos, alterando os resultados e padrão de falha. Apesar disso, a dificuldade de fornecer uma simulação completa do ambiente oral é uma limitação nos estudos in-vitro, sugerindo-se estudos clínicos para confirmar os resultados in vitro.

5. Conclusões

Considerando as limitações do presente estudo, podemos concluir que:

- A silicatização prejudicou o desempenho a fadiga da zircônia 5Y-PSZ quando comparado ao controle e ao jateamento

com partículas de alumina. Contudo, esse efeito negativo da silicatização não foi observado na 3Y-TZP.

- Exceto quando tratada com silicatização, a resistência a fadiga da 5Y-PSZ foi semelhante a 3Y-TZP.

Referências

[1] Della Bona, A. Bonding to ceramics: scientific evidences for clinical dentistry. 1^a edição. São Paulo: Artes Medicas, 2009.

[2] Ghodsi S, Jafarian Z. A Review on Translucent Zirconia. Eur J Prosthodont Restor Dent. 2018;26(2):62-74.

[3] Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: $\frac{1}{2EP}$ From veneered to monolithic. Part I. Quintessence Int. 2017;48(5):369-380

[4] Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137.

[5] Matsuzaki F, Sekine H, Honma S, Takanashi T, Furuya K, Yajima Y, Yoshinari M. Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dent Mater J. 2015;34(6):910-7.

[6] Jitwirachot K, Rungsiyakull P, Holloway JA, Jia-Mahasap W. Wear Behavior of Different Generations of Zirconia: Present Literature. Int J Dent. 2022;2022:9341616.

[7] Baldissara P, Llukacej A, Ciocca L, Valandro FL, Scotti R. Translucency of zirconia copings made with different CAD/CAM systems. J Prosthet Dent. 2010;104(1):6-12.

[8] Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24-34.

[9] Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):327-337.

[10] Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147.

[11] Flask JD, Thompson GA, Singh M, Berzins DW. Edge chipping of translucent zirconia. J Prosthet Dent. 2022;127(5):793-800.

[12] Tsukakoshi M, Shinya A, Gomi H, Lassila LV, Vallittu PK, Shinya A. Effects of dental adhesive cement and surface treatment on bond strength and leakage of zirconium oxide ceramics. Dent Mater J. 2008;27(2):159-71.

[13] Tzanakakis EG, Tzoutzas IG, Koidis PT. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J Prosthet Dent. 2016 Jan;115(1):9-19.

[14] Inokoshi M, De Munck J, Minakuchi S, Van Meerbeek B. Meta-analysis of bonding effectiveness to zirconia ceramics. J Dent Res. 2014 Apr;93(4):329-34.

[15] Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont. 1995;8(2):105-16.

[16] Baran G, Boberick K, McCool J. Fatigue of restorative materials. Crit Rev Oral Biol Med. 2001;12(4):350-60.

[17] Kelly JR, Cesar PF, Scherrer SS, Della Bona A, van Noort R, Tholey M, Vichi A, Lohbauer U. ADM guidance-ceramics: Fatigue principles and testing. Dent Mater. 2017;33(11):1192-1204.

[18] Gardell E, Larsson C, von Steyern PV. Translucent Zirconium Dioxide and Lithium Disilicate: A 3-Year Follow-up of a Prospective, Practice-Based Randomized Controlled Trial on Posterior Monolithic Crowns. Int J Prosthodont. 2021;34(2):163-172.

[19] Alessandretti R, Borba M, Della Bona A. Cyclic contact fatigue resistance of ceramics for monolithic and multilayer dental restorations. Dent Mater. 2020;36(4):535-541.

[20] Skjold A, Schriwer C, Gjerdet NR, Øilo M. Effect of artificial aging on high translucent dental zirconia: simulation of early failure. Eur J Oral Sci. 2020;128(6):526-534.

[21] Rosentritt M, Preis V, Behr M, Strasser T. Fatigue and wear behaviour of zirconia materials. J Mech Behav Biomed Mater. 2020;110:103970.

[22] Lawson NC, Jurado CA, Huang CT, Morris GP, Burgess JO, Liu PR, Kinderknecht KE, Lin CP, Givan DA. Effect of Surface Treatment and Cement on Fracture Load of Traditional Zirconia (3Y), Translucent Zirconia (5Y), and Lithium Disilicate Crowns. J Prosthodont. 2019;28(6):659-665.

[23] Packaeser MG, Aragonez GC, Soares PM, Borges ALS, Pereira GKR, Valandro LF, Rippe MP. High-versus low-viscosity resin cements: Its effect on the load-bearing capacity under fatigue

of a translucent zirconia. J Mech Behav Biomed Mater. 2023;142:105829.

[24] Ruales-Carrera E, Cesar PF, Henriques B, Fredel MC, Özcan M, Volpato CAM. Adhesion behavior of conventional and high-translucent zirconia: Effect of surface conditioning methods and aging using an experimental methodology. J Esthet Restor Dent. 2019;31(4):388-397.

[25] Cadore-Rodrigues AC, Machado PS, Oliveira JS, Jahn SL, Dorneles LS, Rippe MP, Pereira GKR, Valandro LF. Surface treatments and its effects on the fatigue behavior of a 5% mol yttria partially stabilized zirconia material. J Mech Behav Biomed Mater. 2021;120:104543.

[26] Bielen V, Inokoshi M, Munck JD, Zhang F, Vanmeensel K, Minakuchi S, Vleugels J, Naert I, Van Meerbeek B. Bonding Effectiveness to Differently Sandblasted Dental Zirconia. J Adhes Dent. 2015;17(3):235-42.

[27] Antunes MCF, Miranda JS, Carvalho RLA, Carvalho RF, Kimpara ET, Assunção E Souza RO, Leite FPP. Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns? Braz Oral Res. 2018;32:e34.

[28] Kern M, Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater. 1998 Jan;14(1):64-71.

[29] Özcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: a systematic review and meta-analysis. J Adhes Dent. 2015 Feb;17(1):7-26.

[30] Wegner SM, Kern M. Long-term resin bond strength to zirconia ceramic. J Adhes Dent. 2000 Summer;2(2):139-47.

[31] Yoshida K, Tsuo Y, Atsuta M. Bonding of dual-cured resin cement to zirconia ceramic using phosphate acid ester monomer and zirconate coupler. J Biomed Mater Res B Appl Biomater. 2006 Apr;77(1):28-33.

[32] Kelly JR, Rungruanganunt P, Hunter B, Vailati F. Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent. 2010;104(4):228-38.

[33] Vaquero-Aguilar C, Jiménez-Melendo M, Torres-Lagares D, Llena-Blasco O, Bruguera A, Llena-Blasco J, García-Calderón M, Velázquez-Cayón R, Gutiérrez-Pérez JL. Zirconia implant abutments: microstructural analysis. Int J Oral Maxillofac Implants. 2012 Jul-Aug;27(4):785-91.

[34] Weber KR, Benetti P, Della Bona A, Corazza PH, Medeiros JA, Lodi E, Borba M. How does the piston material affect the in vitro mechanical behavior of dental ceramics? J Prosthet Dent. 2018;120(5):747-754.

[35] Weber KR, Meneghetti DE, Benetti P, Della Bona A, Griggs JA, Borba M. Influence of piston material on the fatigue behavior of a glass-ceramic. J Prosthet Dent. 2023;129(6):931-937.

[36] Corazza PH, Duan Y, Kimpara ET, Griggs JA, Della Bona A. Lifetime comparison of Y-TZP/porcelain crowns under different loading conditions. J Dent. 2015;43(4):450-7.

CONSIDERAÇÕES FINAIS

Com base nos resultados dessa tese podemos concluir que: -Existe grande variabilidade nas metodologias de testes de fadiga utilizados para avaliar estruturas de zircônia translucida. Considerando as falhas clínicas em estruturas de zircônia translúcida reportadas, apenas três estudos in vitro apresentaram falhas semelhantes. Como existem poucos estudos clínicos, é difícil associar as falhas ocorridas nos estudos in vitro com falhas clinicas, mostrando a necessidade de mais estudos que reportem falhas clínicas com zircônias translúcidas.

-O tratamento de superfície com silicatização prejudicou o desempenho a fadiga da zircônia 5Y-PSZ quando comparado ao controle e ao jateamento com partículas de alumina. Contudo, esse efeito negativo da silicatização não foi observado na 3Y-TZP. Exceto quando tratada com silicatização, a resistência a fadiga da 5Y-PSZ foi semelhante a 3Y-TZP.

REFERÊNCIAS

Adabo GL, Longhini D, Baldochi MR, Bergamo ETP, Bonfante EA. Reliability and lifetime of lithium disilicate, 3Y-TZP, and 5Y-TZP zirconia crowns with different occlusal thicknesses. Clin Oral Investig. 2023;27(7):3827-3838.

Alessandretti R, Borba M, Della Bona A. Cyclic contact fatigue resistance of ceramics for monolithic and multilayer dental restorations. Dent Mater. 2020;36(4):535-541.

Alves DM, Cadore-Rodrigues AC, Prochnow C, Burgo TAL, Spazzin AO, Bacchi A, Valandro LF, Rocha Pereira GK. Fatigue performance of adhesively luted glass or polycrystalline CAD-CAM monolithic crowns. J Prosthet Dent. 2021;126(1):119-127.

Antón X, Liebermann A, Hampe R, Joda T, Stawarczyk B. Impact of high-speed sintering and choice of preshaded monochrome or multilayered blanks on fatigue behavior of 4 mol% yttria-stabilized tetragonal zirconia polycrystal. J Prosthet Dent. 2023;130(4):639-645.

Antunes MCF, Miranda JS, Carvalho RLA, Carvalho RF, Kimpara ET, Assunção E Souza RO, Leite FPP. Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns? Braz Oral Res. 2018;32:e34.

Arcila LVC, Ramos NC, Campos TMB, Dapieve KS, Valandro LF, de Melo RM, Bottino MA. Mechanical behavior and

microstructural characterization of different zirconia polycrystals in different thicknesses. J Adv Prosthodont. 2021;13(6):385-395.

Auzani ML, Dapieve KS, Zucuni CP, Rocha Pereira GK, Valandro LF. Influence of shading technique on mechanical fatigue performance and optical properties of a 4Y-TZP ceramic for monolithic restorations. J Mech Behav Biomed Mater. 2020;102:103457.

Baldissara P, Llukacej A, Ciocca L, Valandro FL, Scotti R. Translucency of zirconia copings made with different CAD/CAM systems. J Prosthet Dent. 2010;104(1):6-12.

Baran G, Boberick K, McCool J. Fatigue of restorative materials. Crit Rev Oral Biol Med. 2001;12(4):350-60.

Barbosa-Júnior SA, Pereira GKR, Dapieve KS, Machado PS, Valandro LF, Schuh C, Consani RLX, Bacchi A. Mechanical Fatigue Analysis of PEEK as Alternative to Zirconia for Definitive Hybrid Abutments Supporting All-Ceramic Crowns. Int J Oral Maxillofac Implants. 2020;35(6):1209-1217.

Basso GR, Moraes RR, Borba M, Duan Y, Griggs JA, Della Bona A. Reliability and failure behavior of CAD-on fixed partial dentures. Dent Mater. 2016;32(5):624-30.

Benalcazar Jalkh EB, Ramalho IS, Bergamo ETP, Alves LMM, Tanaka R, Witek L, Coelho PG, Hirata R, Bonfante EA. Ultrathin lithium disilicate and translucent zirconia crowns for posterior teeth: Survival and failure modes. J Esthet Restor Dent. 2024;36(2):381-390.

Bielen V, Inokoshi M, Munck JD, Zhang F, Vanmeensel K, Minakuchi S, Vleugels J, Naert I, Van Meerbeek B. Bonding Effectiveness to Differently Sandblasted Dental Zirconia. J Adhes Dent. 2015;17(3):235-42.

Borba M, Cesar PF, Griggs JA, Della Bona A. Step-stress analysis for predicting dental ceramic reliability. Dent Mater. 2013 Aug;29(8):913-8.

Cadore-Rodrigues AC, Machado PS, Oliveira JS, Jahn SL, Dorneles LS, Rippe MP, Pereira GKR, Valandro LF. Surface treatments and its effects on the fatigue behavior of a 5% mol yttria partially stabilized zirconia material. J Mech Behav Biomed Mater. 2021;120:104543.

Collins, J.A., 1993. Staircase or up-and-down methods. Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, 2 ed. John Wiley & Sons, New York, pp. 383–390.

Corazza PH, Duan Y, Kimpara ET, Griggs JA, Della Bona A. Lifetime comparison of Y-TZP/porcelain crowns under different loading conditions. J Dent. 2015;43(4):450-7.

Dal Piva AMO, Tribst JPM, Benalcázar Jalkh EB, Anami LC, Bonfante EA, Bottino MA. Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency. Dent Mater. 2021;37(3):e140-e150.

De Carvalho ABG, Gonçalves NI, Campos TMB, Zucuni C, Valandro LF, de Siqueira Ferreira Anzaloni Saavedra G, Bottino MA, de Assunção E Souza RO, de Melo RM. Fatigue strength of 5Y-FSZ: glazing and polishing effects. Clin Oral Investig. 2022;26(6):4479-4486.

De Kok P, Pereira GKR, Fraga S, de Jager N, Venturini AB, Kleverlaan CJ. The effect of internal roughness and bonding on the fracture resistance and structural reliability of lithium disilicate ceramic. Dent Mater. 2017;33(12):1416-1425.

Della Bona, A. Bonding to ceramics: scientific evidences for clinical dentistry. 1^a edição. São Paulo: Artes Medicas, 2009.

Demachkia AM, Velho HC, Valandro LF, Dimashkieh MR, Samran A, Tribst JPM, de Melo RM. Endocrown restorations in premolars: influence of remaining axial walls of tooth structure and restorative materials on fatigue resistance. Clin Oral Investig. 2023;27(6):2957-2968.

Elraggal A, R Afifi R, Alamoush RA, Raheem IA, Watts DC. Effect of acidic media on flexural strength and fatigue of CAD-CAM dental materials. Dent Mater. 2023;39(1):57-69.

Flask JD, Thompson GA, Singh M, Berzins DW. Edge chipping of translucent zirconia. J Prosthet Dent. 2022;127(5):793-800.

Fraga S, Pereira GKR, Freitas M, Kleverlaan CJ, Valandro LF, May LG. Loading frequencies up to 20Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic. J Mech Behav Biomed Mater. 2016;61:79-86.

Freitas JS, Souza LFB, Dellazzana FZ, Silva TMRD, Ribeiro L, Pereira GKR, May LG. Advanced lithium disilicate: A comparative evaluation of translucency and fatigue failure load to other ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2023a;148:106192.

Freitas JS, Souza LFB, Pereira GKR, May LG. Surface properties and flexural fatigue strength of an advanced lithium disilicate. J Mech Behav Biomed Mater. 2023b;147:106154.

Gardell E, Larsson C, von Steyern PV. Translucent Zirconium Dioxide and Lithium Disilicate: A 3-Year Follow-up of a Prospective, Practice-Based Randomized Controlled Trial on Posterior Monolithic Crowns. Int J Prosthodont. 2021;34(2):163-172. Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent. 2018;26(2):62-74.

Guilardi LF , Soares P, Werner A, de Jager N, Pereira GKR, Kleverlaan CJ, Rippe MP, Valandro LF. Fatigue performance of distinct CAD/CAM dental ceramics. J Mech Behav Biomed Mater. 2020;103:103540.

Gunge H, Ogino Y, Kihara M, Tsukiyama Y, Koyano K. Retrospective clinical evaluation of posterior monolithic zirconia restorations after 1 to 3.5 years of clinical service. J Oral Sci. 2018;60:154–8.

Hansen TL, Schriwer C, Øilo M, Gjengedal H. Monolithic zirconia crowns in the aesthetic zone in heavy grinders with severe tooth wear - An observational case-series. J Dent. 2018;72:14-20.

Hassouneh L, Jum'ah AA, Ferrari M, Wood DJ. Post-fatigue fracture resistance of premolar teeth restored with endocrowns: An in vitro investigation. J Dent. 2020;100:103426.

Heintze SD, Eser A, Monreal D, Rousson V. Using a chewing simulator for fatigue testing of metal ceramic crowns. J Mech Behav Biomed Mater. 2017;65:770-780.

Heintze SD. How to qualify and validate wear simulation devices and methods. Dent Mater. 2006;22(8):712-34.

Holman CD, Lien W, Gallardo FF, Vandewalle KS. Assessing Flexural Strength Degradation of New Cubic Containing Zirconia Materials. J Contemp Dent Pract. 2020;21(2):114-118.

Inokoshi M, De Munck J, Minakuchi S, Van Meerbeek B. Metaanalysis of bonding effectiveness to zirconia ceramics. J Dent Res. 2014 Apr;93(4):329-34. Jerman E, Lümkemann N, Eichberger M, Hampe R, Stawarczyk B. Impact of varying step-stress protocols on the fatigue behavior of 3Y-TZP, 4Y-TZP and 5Y-TZP ceramic. Dent Mater. 2021;37(7):1073-1082.

Jitwirachot K, Rungsiyakull P, Holloway JA, Jia-Mahasap W. Wear Behavior of Different Generations of Zirconia: Present Literature. Int J Dent. 2022;2022:9341616.

Joshi GV, Duan Y, Della Bona A, Hill TJ, St John K, Griggs JA. Contributions of stress corrosion and cyclic fatigue to subcritical crack growth in a dental glass-ceramic. Dent Mater. 2014;30(8):884-90.

Joshi GV, Duan Y, Della Bona A, Hill TJ, St John K, Griggs JA. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions. Dent Mater. 2013;29(11):1123-31.

Jurado CA, Sayed Ahmed A, Lawson NC, Azpiazu-Flores FX, Green C, Cho SH. Fracture resistance of zirconia surveyed crowns with four different occlusal rest seat designs. J Prosthodont. 2023;20:1-6.

Kashkari A, Yilmaz B, Brantley WA, Schricker SR, Johnston WM. Fracture analysis of monolithic CAD-CAM crowns. J Esthet Restor Dent. 2019;31(4):346-352.

Kelly JR, Cesar PF, Scherrer SS, Della Bona A, van Noort R, Tholey M, Vichi A, Lohbauer U. ADM guidance-ceramics: Fatigue principles and testing. Dent Mater. 2017;33(11):1192-1204. Kelly JR, Rungruanganunt P, Hunter B, Vailati F. Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent. 2010;104(4):228-38.

Kern M, Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater. 1998 Jan;14(1):64-71.

Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137.

Lawson NC, Jurado CA, Huang CT, Morris GP, Burgess JO, Liu PR, Kinderknecht KE, Lin CP, Givan DA. Effect of Surface Treatment and Cement on Fracture Load of Traditional Zirconia (3Y), Translucent Zirconia (5Y), and Lithium Disilicate Crowns. J Prosthodont. 2019;28(6):659-665.

Leitão CIMB, Fernandes GVO, Azevedo LPP, Araújo FM, Donato H, Correia ARM. Clinical performance of monolithic CAD/CAM tooth-supported zirconia restorations: systematic review and metaanalysis. J Prosthodont Res. 2022;66(3):374-384.

Li Q, Yang Y, Chen K, Jiang Y, Swain MV, Yao M, He Y, Liang Y, Jian Y, Zhao K. Effect of low-temperature degradation on the fatigue performance of dental strength-gradient multilayered zirconia restorations. J Dent. 2024;142:104866.

Li W, Ding Q, Sun F, Liu B, Yuan F, Zhang L, Bao R, Gu J, Lin Y. Fatigue behavior of zirconia with microgrooved surfaces produced using femtosecond laser. Lasers Med Sci. 2023;38(1):33.

Lodi E, Weber KR, Benetti P, Corazza PH, Della Bona A, Borba M. How oral environment simulation affects ceramic failure behavior. J Prosthet Dent. 2018;119(5):812-818.

Machry RV, Cadore-Rodrigues AC, Borges ALS, Pereira GKR, Kleverlaan CJ, Venturini AB, Valandro LF. Fatigue resistance of simplified CAD-CAM restorations: Foundation material and ceramic thickness effects on the fatigue behavior of partially- and fully-stabilized zirconia. Dent Mater. 2021;37(4):568-577.

Marchionatti AME, Wandscher VF, Aurélio IL, Bergoli CD, May LG. File-splitting multilayer vs monolithic Y-TZP: Fatigue flexural strength and loading stresses by finite element analysis. Dent Mater. 2019;35(4):e63-e73.

Marini G, Saldanha da Rosa L, Machado PS, Silvestre FA, Valandro LF, Feitosa VP, Pereira GKR, Bacchi A. Fatigue performance analysis of strength-graded zirconia polycrystals for monolithic three-unit implant-supported prostheses. J Mech Behav Biomed Mater. 2023;140:105736.

Matsuzaki F, Sekine H, Honma S, Takanashi T, Furuya K, Yajima Y, Yoshinari M. Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dent Mater J. 2015;34(6):910-7.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

Nakamura K, Ankyu S, Nilsson F, Kanno T, Niwano Y, Vult von Steyern P, Örtengren U. Critical considerations on load-to-failure test for monolithic zirconia molar crowns. J Mech Behav Biomed Mater. 2018;87:180-189.

Nelson W. Accelerated life testing - Step-stress models and data analyses. IEEE Trans Reliab 1980;R-29(2):103-8.

Nishioka G, Prochnow C, Firmino A, Amaral M, Bottino MA, Valandro LF, Melo RM. Fatigue strength of several dental ceramics indicated for CAD-CAM monolithic restorations. Braz Oral Res. 2018;32:e53.

Ottoni R, Griggs JA, Corazza PH, Della Bona A, Borba M. Precision of different fatigue methods for predicting glassceramic failure. J Mech Behav Biomed Mater. 2018;88:497-503.

Özcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: a systematic review and meta-analysis. J Adhes Dent. 2015 Feb;17(1):7-26.

Packaeser MG, Aragonez GC, Soares PM, Borges ALS, Pereira GKR, Valandro LF, Rippe MP. High-versus low-viscosity resin cements: Its effect on the load-bearing capacity under fatigue of a translucent zirconia. J Mech Behav Biomed Mater. 2023;142:105829.

Pereira GKR, Graunke P, Maroli A, Zucuni CP, Prochnow C, Valandro LF, Caldas RA, Bacchi A. Lithium disilicate glassceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution. J Mech Behav Biomed Mater. 2019;91:122-130.

Preis V, Hahnel S, Behr M, Bein L, Rosentritt M. In-vitro fatigue and fracture testing of CAD/CAM-materials in implant-supported molar crowns. Dent Mater. 2017;33(4):427-433.

Refaie A, Bourauel C, Fouda AM, Keilig L, Singer L. The effect of cyclic loading on the fracture resistance of 3D-printed and CAD/CAM milled zirconia crowns-an in vitro study. Clin Oral Investig. 2023;27(10):6125-6133.

Rosentritt M, Preis V, Behr M, Strasser T. Fatigue and wear behaviour of zirconia materials. J Mech Behav Biomed Mater. 2020;110:103970.

Ruales-Carrera E, Cesar PF, Henriques B, Fredel MC, Özcan M, Volpato CAM. Adhesion behavior of conventional and high-translucent zirconia: Effect of surface conditioning methods and aging using an experimental methodology. J Esthet Restor Dent. 2019;31(4):388-397.

Skjold A, Schriwer C, Gjerdet NR, Øilo M. Effect of artificial aging on high translucent dental zirconia: simulation of early failure. Eur J Oral Sci. 2020;128(6):526-534.

Skjold A, Schriwer C, Gjerdet NR, Øilo M. Fractographic analysis of 35 clinically fractured bi-layered and monolithic zirconia crowns. J Dent. 2022;125:104271.

Soares PM, Cadore-Rodrigues AC, Souto Borges AL, Valandro LF, Pereira GKR, Rippe MP. Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. J Mech Behav Biomed Mater. 2021;123:104760.

Spazzin AO, Guarda GB, Oliveira-Ogliari A, Leal FB, Correr-Sobrinho L, Moraes RR. Strengthening of Porcelain Provided by Resin Cements and Flowable Composites. Oper Dent. 2016;41(2):179-88.

Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: $\frac{1}{5EP}$ From veneered to monolithic. Part I. Quintessence Int. 2017;48(5):369-380.

Sulaiman TA, Abdulmajeed AA, Delgado A, Donovan TE. Fracture rate of 188695 lithium disilicate and zirconia ceramic
restorations after up to 7.5 years of clinical service: A dental laboratory survey. J Prosthet Dent. 2020;123(6):807-810.

Tomm AGF, Machado PS, Rosa LSD, Pereira GKR, Spazzin AO, Alessandretti R. Fatigue resistance of monolithic and multilayer zirconia crowns using veneer layering or CAD-on technique. Braz Dent J. 2023;34(6):150-159.

Tsukakoshi M, Shinya A, Gomi H, Lassila LV, Vallittu PK, Shinya A. Effects of dental adhesive cement and surface treatment on bond strength and leakage of zirconium oxide ceramics. Dent Mater J. 2008;27(2):159-71.

Tzanakakis EG, Tzoutzas IG, Koidis PT. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J Prosthet Dent. 2016 Jan;115(1):9-19.

Vaquero-Aguilar C, Jiménez-Melendo M, Torres-Lagares D, Llena-Blasco O, Bruguera A, Llena-Blasco J, García-Calderón M, Velázquez-Cayón R, Gutiérrez-Pérez JL. Zirconia implant abutments: microstructural analysis. Int J Oral Maxillofac Implants. 2012 Jul-Aug;27(4):785-91.

Weber KR, Benetti P, Della Bona A, Corazza PH, Medeiros JA, Lodi E, Borba M. How does the piston material affect the in vitro mechanical behavior of dental ceramics? J Prosthet Dent. 2018 Nov;120(5):747-754.

Weber KR, Meneghetti DE, Benetti P, Della Bona A, Griggs JA, Borba M. Influence of piston material on the fatigue behavior of a glass-ceramic. J Prosthet Dent. 2023;129(6):931-937.

Wegner SM, Kern M. Long-term resin bond strength to zirconia ceramic. J Adhes Dent. 2000 Summer;2(2):139-47.

Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont. 1995;8(2):105-16.

Yi YJ, Kelly JR. Effect of occlusal contact size on interfacial stresses and failure of a bonded ceramic: FEA and monotonic loading analyses. Dent Mater. 2008;24(3):403-9.

Yoshida K, Tsuo Y, Atsuta M. Bonding of dual-cured resin cement to zirconia ceramic using phosphate acid ester monomer and zirconate coupler. J Biomed Mater Res B Appl Biomater. 2006 Apr;77(1):28-33.

Zacher J, Bauer R, Strasser T, Rosentritt M. Laboratory performance and fracture resistance of CAD/CAM implant-supported tooth-coloured anterior FDPs. J Dent. 2020;96:103326.

Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):327-337.

Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24-34.

Zhang Y and Griggs JA. Evaluation of failure probability estimators for cyclic fatigue using boundary technique. Journal of Materials Science Letters 2003;22(24):1775-1777

Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147.

Zhang Y, Sailer I, Lawn BR. Fatigue of dental ceramics. J Dent. 2013;41(12):1135-47.

Zimmermann M, Ender A, Mehl A. Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness. Oper Dent. 2020;45(2):219-226.

Zucuni CP, Guilardi LF, Fraga S, May LG, Pereira GKR, Valandro LF. CAD/CAM machining vs pre-sintering in-lab fabrication techniques of Y-TZP ceramic specimens: Effects on their mechanical fatigue behavior. J Mech Behav Biomed Mater. 2017;71:201-208.